Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (4): 1587-1602.doi: 10.1007/s10473-023-0409-8
Previous Articles Next Articles
Xiangxing TAO1, Yuan ZENG1,†, Xiao YU2
Received:
2022-01-24
Published:
2023-08-08
Contact:
†Xiangxing TAO, E-mail: About author:
Xiangxing TAO, E-mail: xxtau@163.com; Xiao YU, E-mail: yx2000s@163.com
Supported by:
Xiangxing TAO, Yuan ZENG, Xiao YU. BOUNDEDNESS AND COMPACTNESS FOR THE COMMUTATOR OF THE ω-TYPE CALDERÓN-ZYGMUND OPERATOR ON LORENTZ SPACE∗[J].Acta mathematica scientia,Series B, 2023, 43(4): 1587-1602.
[1] Calderón A P. Commutators of singular integral operators. Proc Natl Acad Sci USA,1965, 53: 1092-1099 [2] Pérez C. Endpoint estimates for commutators of singular integral operators. J Funct Anal,1995, 128(1): 163-185 [3] Yabuta K. Generalization of Calderón-Zygmund operators. Studia Math,1985, 82(1): 17-31 [4] Stein E M.Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton: Princeton Univ Press, 1993 [5] García-Cuerva J, De Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam: North Holland, 1985 [6] Journé J L. Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Berlin: Springer, 1983 [7] Bramanti M, Cerutti M C. Commutators of singular integrals on homogeneous spaces. Bollettino della Unione Matematica Italiana-B, 1996, 10(4): 843-884 [8] Macías R, Segovia C. Lipschitz functions on spaces of homogeneous type. Adv Math,1979, 33(3): 257-270 [9] Dao N A, Krantz S G. Lorentz boundedness and compactness characterization of integral commutators on spaces of homogeneous type. Nonlinear Anal, 2021, 203: 112162 [10] Stempak K, Tao X X. Local Morrey and Campanato spaces on quasimetric measure spaces. J Funct Spaces, 2014, Art: 172486 [11] Duoandikoetxea J. Fourier Analysis.Providence, RI: Amer Math Soc, 2001 [12] Coifman R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann of Math, 1976, 103: 611-635 [13] Uchiyama A. On the compactness of operators of Hankel type. Tohoku Math J, 1978, 30(1): 163-171 [14] Janson S. Mean oscillation and commutators of singular integral operators. Ark Mat, 1978, 16(2): 263-270 [15] Krantz S, Li S Y. Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II. J Math Anal Appl, 2001, 258(2): 642-657 [16] Grafakos L. Classical Fourier Analysis. New York: Springer, 2014 [17] John F, Nirenberg L. On functions of bounded mean oscillation. Comm Pure Appl Math, 1961, 14: 415-426 [18] Quek T S, Yang D C. Calderón-Zgymund-type operators on weighted weak Hardy spaces over ![]() ![]() [19] Cwikel M. The dual of weak ![]() ![]() [20] Torchinsky A.Real-Variable Methods in Harmonic Analysis. San Diego: Academic Press, 1986 [21] Brudnyi Y. Compactness criteria for spaces of measurable functions. St Petersburg Math J, 2015, 26(1): 49-68 [22] Clop A, Cruz V. Weighted estimates for Beltrami equations. Ann Acad Sci Fenn Math, 2013, 38(1): 91-113 |
[1] | Qianjun HE, Xinfeng WU, Dunyan YAN. BOUNDS FOR MULTILINEAR OPERATORS UNDER AN INTEGRAL TYPE CONDITION ON MORREY SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1191-1208. |
[2] | Yunan CUI, Paweƚ FORALEWSKI, Joanna KOŃCZAK. ORLICZ-LORENTZ SEQUENCE SPACES EQUIPPED WITH THE ORLICZ NORM [J]. Acta mathematica scientia,Series B, 2022, 42(2): 623-652. |
[3] | Kwok-Pun HO. A GENERALIZATION OF BOYD'S INTERPOLATION THEOREM [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1263-1274. |
[4] | Jun LIU, Dachun YANG, Wen YUAN. LITTLEWOOD-PALEY CHARACTERIZATIONS OF ANISOTROPIC HARDY-LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 1-33. |
[5] | SHAO Jing-Jing, HAN Ya-Zhou. SZEGÖ|TYPE FACTORIZATION THEOREM FOR NONCOMMUTATIVE HARDY-LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2013, 33(6): 1675-1684. |
[6] | REN Yan-Bo, GUO Tie-Xin. WEAK ATOMIC DECOMPOSITIONS OF MARTINGALE HARDY-LORENTZ SPACES AND APPLICATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1157-1166. |
[7] | HAN Ya-Zhou, Turdebek N. Bekjan. THE DUAL OF NONCOMMUTATIVE LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2011, 31(5): 2067-2080. |
[8] | Ayse Sandikci A. Turan G¨urkanli. GABOR ANALYSIS OF THE SPACES {\boldmath M( p, q, w) ({Rd) AND S( p, q, r, w, ω) (Rd) [J]. Acta mathematica scientia,Series B, 2011, 31(1): 141-158. |
[9] | FAN Li-Ping, JIAO Yong, LIU Pei-De. LORENTZ MARTINGALE SPACES AND INTERPOLATION [J]. Acta mathematica scientia,Series B, 2010, 30(4): 1143-1153. |
[10] | CHEN Li-Gong, LIU Pei-De. THE DYADIC DERIVATIVE AND CESÀRO MEAN OF BANACH-VALUED MARTINGALES [J]. Acta mathematica scientia,Series B, 2009, 29(2): 265-275. |
[11] | Hakan Avci; A. Turan Gurkanli. MULTIPLIERS AND TENSOR PRODUCTS OF L(p, q) LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2007, 27(1): 107-116. |
[12] | Cenap Duyar A. Turan G¨urkanli. MULTIPLIERS AND RELATIVE COMPLETION IN WEIGHTED LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2003, 23(4): 467-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 68
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|