Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (4): 1603-1617.doi: 10.1007/s10473-023-0410-2
Previous Articles Next Articles
Shangquan BU1, Gang CAI2,†
Received:
2022-03-11
Revised:
2022-06-29
Published:
2023-08-08
Contact:
†Gang CAI, E-mail: caigang-aaaa@163.com
About author:
Shangquan BU, E-mail: bushangquan@mail.tsinghua.edu.cn
Supported by:
Shangquan BU, Gang CAI. THE WELL-POSEDNESS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN COMPLEX BANACH SPACES∗[J].Acta mathematica scientia,Series B, 2023, 43(4): 1603-1617.
[1] Arendt W, Bu S. Operator-valued multipliers on periodic Besov spaces and applications. Proc Edinb Math Soc, 2004, 47: 15-33 [2] Arendt W, Bu S. The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math Z, 2002, 240: 311-343 [3] Bourgain J. A Hausdorff-Young inequality for $B$-convex Banach spaces. Pacific J Math, 1982, 101: 255-262 [4] Bourgain J. Some remarks on Banach spaces in which martingale differences sequences are unconditional. Arkiv Math, 1983, 21: 163-168 [5] Bu S. Well-posedness of equations with fractional derivative. Acta Math Sinica, 2010, 26(7): 1223-1232 [6] Bu S, Cai G. Well-posedness of fractional degenerate differential equations in Banach spaces. Fract Calc Appl Anal, 2019, 22: 379-395 [7] Carracedo M, Sanz Alix M.The Theory of Fractional Powers of Operators. Amsterdam: Elsevier, 2001 [8] Haase M.The Functional Calculus for Sectorial Operators. Basel: Birkháuser, 2006 [9] Favini A, Yagi A.Degenerate Differential Equations in Banach Spaces. New York: Marcel Dekker, 1999 [10] Ledoux M, Talagrand M.Probability in Banach Spaces. Berlin: Springer, 1991 [11] Lizama C, Ponce R. Periodic solutions of degenerate differential equations in vector valued function spaces. Studia Math, 2011, 202(1): 49-63 [12] Keyantuo V, Lizama C. A characterization of periodic solutions for time-frcational differential equations in UMD spaces and applications. Math Nachr, 2011, 284(4): 494-506 [13] Pisier G. Sur les espaces de Banach qui ne contiennent pas uniformément de $\ell_1^n$. C R Acad Sci Paris,1973, 277(1): 991-994 [14] Poblete V, Poblete F, Pozo J. C. Strong solutions of a neutral type equation with finite delay. J Evol Equ, 2019, 19(2): 361-386 [15] Poblete V, Pozo J C. Periodic solutions of an abstract third-order differential equation. Studia Math, 2013, 215: 195-219 [16] Ponce R, Poblete V. Maximal $L^p$-regularity for fractional differential equations on the line. Math Nachr, 2017, 290(13): 2009-2023 [17] Zygmund A. Trigonometric Series, Vol II.Cambridge: Cambridge University Press, 1959 |
[1] | Yuhui Chen, Qinghe Yao, Minling Li, Zheng-an Yao. GLOBAL WELL-POSEDNESS AND OPTIMAL TIME DECAY RATES FOR THE GENERALIZED PHAN-THIEN-TANNER MODEL IN ${\mathbb{R}}^{3}$* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1301-1322. |
[2] | Mingxuan Zhu, Zaihong Jiang. THE CAUCHY PROBLEM FOR THE CAMASSA-HOLM-NOVIKOV EQUATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 736-750. |
[3] | Changxing MIAO, Junyong ZHANG, Jiqiang ZHENG. A NONLINEAR SCHRÖDINGER EQUATION WITH COULOMB POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2230-2256. |
[4] | Weixi LI, Rui XU, Tong YANG. GLOBAL WELL-POSEDNESS OF A PRANDTL MODEL FROM MHD IN GEVREY FUNCTION SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(6): 2343-2366. |
[5] | Qingyou He, Jiawei Sun. LARGE TIME BEHAVIOR OF THE 1D ISENTROPIC NAVIER-STOKES-POISSON SYSTEM [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1843-1874. |
[6] | Jinlu LI, Zhaoyang YIN, Xiaoping ZHAI. GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2131-2148. |
[7] | Wei WANG, Bin ZHAO. CHARACTERIZATION OF RESIDUATED LATTICES VIA MULTIPLIERS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1902-1920. |
[8] | Xueting Jin, Yuelong Xiao, Huan Yu. GLOBAL WELL-POSEDNESS OF THE 2D BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1293-1309. |
[9] | Qianjun HE, Xinfeng WU, Dunyan YAN. BOUNDS FOR MULTILINEAR OPERATORS UNDER AN INTEGRAL TYPE CONDITION ON MORREY SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1191-1208. |
[10] | Xiangyu ZHOU, Langfeng ZHU. L2 EXTENSIONS WITH SINGULAR METRICS ON KÄHLER MANIFOLDS [J]. Acta mathematica scientia,Series B, 2021, 41(6): 2021-2038. |
[11] | Yongjian LIU, Stanis law MIGORSKI, Van Thien NGUYEN, Shengda ZENG. EXISTENCE AND CONVERGENCE RESULTS FOR AN ELASTIC FRICTIONAL CONTACT PROBLEM WITH NONMONOTONE SUBDIFFERENTIAL BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1151-1168. |
[12] | Naiqi SONG, Heping LIU, Jiman ZHAO. BILINEAR SPECTRAL MULTIPLIERS ON HEISENBERG GROUPS [J]. Acta mathematica scientia,Series B, 2021, 41(3): 968-990. |
[13] | Pablo GALINDO, Mikael LINDSTRÖM. THE BLOCH SPACE ON THE UNIT BALL OF A HILBERT SPACE: MAXIMALITY AND MULTIPLIERS [J]. Acta mathematica scientia,Series B, 2021, 41(3): 899-906. |
[14] | Tingting CHEN, Aifang QU, Zhen WANG. EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS [J]. Acta mathematica scientia,Series B, 2021, 41(3): 941-958. |
[15] | Yong CHEN, Ya LIU, Chuntao QIN. REDUCIBILITY FOR A CLASS OF ANALYTIC MULTIPLIERS ON SOBOLEV DISK ALGEBRA [J]. Acta mathematica scientia,Series B, 2021, 41(2): 361-370. |
|