Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (2): 640-654.doi: 10.1007/s10473-023-0210-8
Previous Articles Next Articles
Zhaojie Zhou1, Fangyuan Wang1, Xiangcheng Zheng2,†
Received:
2021-10-29
Revised:
2022-02-08
Online:
2023-03-25
Published:
2023-04-12
Contact:
†Xiangcheng Zheng, E-mail: About author:
Zhaojie Zhou, E-mail: zhouzhaojie@sdnu.edu.cn; Fangyuan Wang, E-mail: wfy_sdnu@163.com
Supported by:
Zhaojie Zhou, Fangyuan Wang, Xiangcheng Zheng. ANALYSIS AND DISCRETIZATION FOR AN OPTIMAL CONTROL PROBLEM OF A VARIABLE-COEFFICIENT RIESZ-FRACTIONAL DIFFUSION EQUATION WITH POINTWISE CONTROL CONSTRAINTS*[J].Acta mathematica scientia,Series B, 2023, 43(2): 640-654.
[1] Acosta G, Borthagaray J P.A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J Numer Anal, 2017, 55: 472-495 [2] Adams R, Fournier J. Sobolev Spaces. San Diego: Elsevier, 2003 [3] Antil H, Otárola E.A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J Control Optim, 2015, 53(6): 3432-3456 [4] Antil H, Otárola E, Salgado A J.A space-time fractional optimal control problem: analysis and discretiza- tion. SIAM J Control Optim, 2016, 54(3): 1295-1328 [5] Benson D A, Wheatcraft S W, Meerschaeert M M.The fractional order governing equations of levy motion. Water Resour Res, 2000, 36(6): 1413-1423 [6] Brenner S C, Scott L R.The Mathematical Theory of Finite Element Methods. New York: Springer, 2008 [7] Becker R, Kapp H, Rannacher R.Adaptive finite element methods for optimal control of partial differential equations: Basic concept. SIAM J Control Optim, 2000, 39(1): 113-132 [8] Chen S, Shen J, Wang L L.Generalized Jacobi functions and their applications to fractional differential equations. Math Comp, 2016, 85: 1603-1638 [9] Chen S, Shen J.An efficient and accurate numerical method for the spectral fractional Laplacian equation. J Sci Comput, 2020, 82(1): 1-25 [10] D'Elia M, Glusa C, Otárola E. A priori error estimates for the optimal control of the integral fractional Laplacian. SIAM J Control Optim, 2019, 57: 2775-2798 [11] Du N, Wang H, Liu W B.A fast gradient projection method for a constrained fractional optimal control. J Sci Comput, 2016, 68: 1-20 [12] Ervin V J, Roop J P.Variational formulation for the stationary fractional advection dispersion equation. Numer Meth for PDE, 2006, 22: 558-576 [13] Ervin V J.Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces. J Differ Equ, 2021, 278: 294-325 [14] Ervin V J, Heuer N, Roop J P.Regularity of the solution to 1-d fractional order diffusion equations. Math Comput, 2018, 87: 2273-2294 [15] Hao Z P, Park M, Lin G, et al.Finite element method for two-sided fractional differential equations with variable coefficients: Galerkin approach. J Sci Comput, 2019, 79: 700-717 [16] Hao Z P, Zhang Z Q.Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations. SIAM J Numer Anal, 2020, 58(1): 211-233 [17] Kunisch K, Vexler B.Constrained Dirichlet boundary control in L2 for a class of evolution equations. SIAM J Control Optim, 2007, 46(5): 1726-1753 [18] Klafter J, Sokolov I M.Anomalous diffusion spreads its wings. Phys World, 2005, 18(8): 29-32 [19] Li S Y, Zhou Z J.Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation. Appl Math Comput, 2019, 350: 331-347 [20] Ma L J, Liu B.Dynamic analysis and optimal control of a fractional order singular Leslie-Gower prey- predator model. Acta Math Sci, 2020, 40B(5): 1525-1552 [21] Mao Z P, Chen S, Shen J.Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl Numer Math, 2016, 106: 165-181 [22] Mao Z P, Karniadakis G E.A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J Numer Anal, 2018, 56: 24-49 [23] Meerschaert M M, Sikorskii A.Stochastic Models for Fractional Calculus. Berlin: De Gruyter, 2019 [24] Nezza E D, Palatucci G, Valdinoci E.Hitchhiker's guide to the fractional Sobolev spaces. Bulletin des Sciences Mathématiques, 2012, 136: 521-573 [25] Wang F Y, Zhang Z Q, Zhou Z J.A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations. J Comput Appl Math, 2021, 386: 113233 [26] Wang H, Yang D P.Wellposedness of variable-coefficient conservative fractional elliptic differential equa- tions. SIAM J Numer Anal, 2013, 51: 1088-1107 [27] Wang H, Yang D P, Zhu S F.Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J Numer Anal, 2014, 52: 1292-1310 [28] Zhang L, Zhou Z J.Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation. Appl Numer Math, 2019, 143: 247-262 [29] Zaky M A, Tenreiro Machado J A. On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun Nonlinear Sci Numer Simul, 2017, 52: 177-189 [30] Zaky M A.A Legendre collocation method for distributed-order fractional optimal control problems. Non- linear Dyn, 2018, 91: 2667-2681 [31] Zhang Z Q.Error estimates of spectral Galerkin methods for a linear fractional reaction-diffusion equation. J Sci Comput, 2019, 78: 1087-1110 [32] Zheng X C, Ervin V J, Wang H.Numerical approximations for the variable coefficient fractional diffusion equations with non-smooth data. Comput Math Appl Math, 2020, 20(3): 573-589 [33] Zheng X C, Ervin V J, Wang H.An indirect finite element method for variable-coefficient space-fractional diffusion equations and its optimal-order error estimates. Commun Appl Math Comput, 2020, 2: 147-162 [34] Zheng X C, Ervin V J, Wang H.Wellposedness of the two-sided variable coefficient Caputo flux fractional diffusion equation and error estimate of its spectral approximation. Appl Numer Math, 2020, 153: 234-237 [35] Zheng X C, Wang H.An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J Numer Anal, 2020, 58(1): 330-352 |
[1] | Bin CHEN, Sergey A. TIMOSHIN. OPTIMAL CONTROL OF A POPULATION DYNAMICS MODEL WITH HYSTERESIS [J]. Acta mathematica scientia,Series B, 2022, 42(1): 283-298. |
[2] | Juan WEN, Pengzhan HUANG, Ya-Ling HE. THE TWO-LEVEL STABILIZED FINITE ELEMENT METHOD BASED ON MULTISCALE ENRICHMENT FOR THE STOKES EIGENVALUE PROBLEM [J]. Acta mathematica scientia,Series B, 2021, 41(2): 381-396. |
[3] | Qixia ZHANG. MAXIMUM PRINCIPLE FOR STOCHASTIC OPTIMAL CONTROL PROBLEM WITH DISTRIBUTED DELAYS [J]. Acta mathematica scientia,Series B, 2021, 41(2): 437-449. |
[4] | Linjie MA, Bin LIU. DYNAMIC ANALYSIS AND OPTIMAL CONTROL OF A FRACTIONAL ORDER SINGULAR LESLIE-GOWER PREY-PREDATOR MODEL [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1525-1552. |
[5] | Guangzhi DU. EXPANDABLE PARALLEL FINITE ELEMENT METHODS FOR LINEAR ELLIPTIC PROBLEMS [J]. Acta mathematica scientia,Series B, 2020, 40(2): 572-588. |
[6] | Huoyuan DUAN, Junhua MA. CONTINUOUS FINITE ELEMENT METHODS FOR REISSNER-MINDLIN PLATE PROBLEM [J]. Acta mathematica scientia,Series B, 2018, 38(2): 450-470. |
[7] | Xian-jia WANG, Rui DONG, Lin CHEN. THE OPTIMAL CONTROL FOR PROMOTING THE COOPERATION IN EVOLUTION GAME GENERATED BY PRISONER'S DILEMMA [J]. Acta mathematica scientia,Series B, 2018, 38(1): 73-92. |
[8] | Guangzhi DU, Liyun ZUO. LOCAL AND PARALLEL FINITE ELEMENT METHOD FOR THE MIXED NAVIER-STOKES/DARCY MODEL WITH BEAVERS-JOSEPH INTERFACE CONDITIONS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1331-1347. |
[9] | Yamna BOUKHATEM, Benyattou BENABDERRAHMANE. GENERAL DECAY FOR A VISCOELASTIC EQUATION OF VARIABLE COEFFICIENTS WITH A TIME-VARYING DELAY IN THE BOUNDARY FEEDBACK AND ACOUSTIC BOUNDARY CONDITIONS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1453-1471. |
[10] | A. JAJARMI, M. HAJIPOUR. AN EFFICIENT PARALLEL PROCESSING OPTIMAL CONTROL SCHEME FOR A CLASS OF NONLINEAR COMPOSITE SYSTEMS [J]. Acta mathematica scientia,Series B, 2017, 37(3): 703-721. |
[11] | Limeng WU, Juan ZHANG, Mingkang NI, Haibo LU. ASYMPTOTIC SOLUTION OF SINGULARLY PERTURBED HYBRID DYNAMICAL SYSTEMS [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1457-1466. |
[12] | Xinlong FENG, Yinnian HE. CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM [J]. Acta mathematica scientia,Series B, 2016, 36(1): 124-138. |
[13] | Chen FEI, Weiyin FEI. OPTIMAL CONTROL OF MARKOVIAN SWITCHING SYSTEMS WITH APPLICATIONS TO PORTFOLIO DECISIONS UNDER INFLATION [J]. Acta mathematica scientia,Series B, 2015, 35(2): 439-458. |
[14] | WEN Juan, HE Yin-Nian, WANG Xue-Min, HE Mi-Hui. TWO-LEVEL MULTISCALE FINITE ELEMENT METHODS FOR THE STEADY NAVIER-STOKES PROBLEM [J]. Acta mathematica scientia,Series B, 2014, 34(3): 960-972. |
[15] | LI Ming-Xia, CHEN Hong-Tao, MAO Shi-Peng. ACCURACY ENHANCEMENT FOR THE SIGNORINI PROBLEM WITH FINITE ELEMENT METHOD [J]. Acta mathematica scientia,Series B, 2011, 31(3): 897-908. |
|