Acta mathematica scientia,Series B ›› 2019, Vol. 39 ›› Issue (2): 369-381.doi: 10.1007/s10473-019-0203-9
• Articles • Previous Articles Next Articles
Iz-iddine EL-FASSI1, Hamid KHODAEI2, Themistocles M. RASSIAS3
Received:
2018-04-11
Revised:
2018-06-17
Online:
2019-04-25
Published:
2019-05-06
Contact:
Iz-iddine EL-FASSI
E-mail:izidd-math@hotmail.fr;izelfassi.math@gmail.com
Iz-iddine EL-FASSI, Hamid KHODAEI, Themistocles M. RASSIAS. APPROXIMATE SOLUTION OF A p-th ROOT FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN (2, β)-BANACH SPACES[J].Acta mathematica scientia,Series B, 2019, 39(2): 369-381.
[1] Agarwal R P, Xu B, Zhang W. Stability of functional equations in single variable. J Math Anal Appl, 2003, 288:852-869 [2] Aiemsomboon L, Sintunavarat W. On a new type of stability of a radical quadratic functional equation using Brzdęk's fixed point theorem. Acta Math Hungar, 2017, 151(1):35-46 [3] Alizadeh Z, Ghazanfari A G. On the stability of a radical cubic functional equation in quasi-β-spaces. J Fixed Point Theory Appl, 2016, 18:843-853 [4] Aoki T. On the stability of the linear transformation in Banach spaces. J Math Soc Japan, 1950, 2:64-66 [5] Bourgin D G. Approximately isometric and multiplicative transformations on continuous function rings. Duke Math J, 1949, 16:385-397 [6] Bourgin D G. Classes of transformations and bordering transformations. Bull Amer Math Soc, 1951, 57:223-237 [7] Brzdęk J. Hyperstability of the Cauchy equation on restricted domains. Acta Math Hungar, 2013, 141(1/2):58-67 [8] Brzdęk J. Remarks on solutions to the functional equations of the radical type. Adv Theory Nonlinear Anal Appl, 2017, 1(2):125-135 [9] Brzdęk J, Ciepliński K. A fixed point approach to the stability of functional equations in non-Archimedean metric spaces. Nonlinear Anal, 2011, 74:6861-6867 [10] Brzdęk J, Ciepliński K. Hyperstability and superstability. Abstr Appl Anal, 2003, 2013:Article ID 401756 [11] Brzdęk J, Ciepliński K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Math Sci, 2018, 38B(2):377-390 [12] Brzdęk J, Fechner W, Moslehian M S, Sikorska J. Recent developments of the conditional stability of the homomorphism equation. Banach J Math Anal, 2015, 9:278-327 [13] Dung N V, Hang V T L. The generalized hyperstability of general linear equations in quasi-Banach spaces. J Math Anal Appl, 2018, 462:131-147 [14] EL-Fassi Iz. On a new type of hyperstability for radical cubic functional equation in non-Archimedean metric spaces. Results Math, 2017, 72:991-1005 [15] EL-Fassi Iz. Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces. J Math Anal Appl, 2017, 455:2001-2013 [16] EL-Fassi Iz. A new type of approximation for the radical quintic functional equation in non-Archimedean (2, β)-Banach spaces. J Math Anal Appl, 2018, 457:322-335 [17] EL-Fassi Iz. On the general solution and hyperstability of the general radical quintic functional equation in quasi-β-Banach spaces. J Math Anal Appl, 2018, 466:733-748 [18] EL-Fassi Iz. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi-β-Banach spaces. RACSAM, 2018, https://doi.org/10.1007/s13398-018-0506-z [19] EL-Fassi Iz, Brzdęk J, Chahbi A, Kabbaj S. On hyperstability of the biadditive functional equation. Acta Math Sci, 2017, 37B(6):1727-1739 [20] El-Fassi Iz, Kabbaj S. On the generalized orthogonal stability of the Pexiderized quadratic functional equation in modular space. Math Slovaca, 2017, 67(1):165-178 [21] Gähler S. Lineare 2-normierte Räume. Math Nachr, 1964, 28:1-43(in German) [22] Gähler S. Über 2-Banach-Räume. Math Nachr, 1969, 42:335-347(in German) [23] Gajda Z. On stability of additive mappings. Int J Math Math Sci, 1991, 14:431-434 [24] Găvruta P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl, 1994, 184:431-436 [25] Gordji M E, Khodaei H, Rassias Th M. A Functional Equation Having Monomials and Its Stability. Optimization and Its Applications, 96. Springer, 2014 [26] Hensel K. Über eine neue Begründung der Theorie der algebraischen Zahlen. Jahresber Dtsch Math-Ver, 1897, 6:83-88 [27] Hyers D H. On the stability of the linear functional equation. Proc Nat Acad Sci, USA, 1941, 27:222-224 [28] Katsaras A K, Beoyiannis A. Tensor products of non-Archimedean weighted spaces of continuous functions. Georgian Math J, 1999, 6:33-44 [29] Khodaei H, Eshaghi Gordji M, Kim S S, Cho Y J. Approximation of radical functional equations related to quadratic and quartic mappings. J Math Anal Appl, 2012, 395:284-297 [30] Khrennikov A. Non-Archimedean Analysis:Quantum Paradoxes, Dynamical Systems and Biological Models. Mathematics and Its Applications, 427. Dordrecht:Kluwer Academic, 1997 [31] Maksa G, Páles Z. Hyperstability of a class of linear functional equations. Acta Math Acad Paedagog Nyháazi (NS), 2001, 17:107-112 [32] Moslehian M S, Rassias Th M. Stability of functional equations in non-Archimedean spaces. Appl Anal Discrete Math, 2007, 1:325-334 [33] Nyikos P J. On some non-Archimedean spaces of Alexandrof and Urysohn. Topol Appl, 1999, 91:1-23 [34] Rassias Th M. On the stability of the linear mapping in Banach spaces. Proc Amer Math Soc, 1978, 72:297-300 [35] Rassias Th M. On a modified Hyers-Ulam sequence. J Math Anal Appl, 1991, 158:106-113 [36] Rassias Th M, Semrl P. On the behavior of mappings which do not satisfy Hyers-Ulam stability. Proc Amer Math Soc, 1992, 114:989-993 [37] Ulam S M. A Collection of Mathematical Problems. New York:Interscience Publishers, 1960; Reprinted as:Problems in Modern Mathematics. New York:John Wiley & Sons, Inc, 1964 [38] White A. 2-Banach spaces. Math Nachr, 1969, 42:43-60 [39] Xu B, Brzdęk J, Zhang W. Fixed point results and the Hyers-Ulam stability of linear equations of higher orders. Pacific J Math, 2015, 273(2):483-498 |
[1] | Zaitao LIANG, Yanjuan YANG. RADIAL CONVEX SOLUTIONS OF A SINGULAR DIRICHLET PROBLEM WITH THE MEAN CURVATURE OPERATOR IN MINKOWSKI SPACE [J]. Acta mathematica scientia,Series B, 2019, 39(2): 395-402. |
[2] | Muaadh ALMAHALEBI, Abdellatif CHAHBI. APPROXIMATE SOLUTION OF P-RADICAL FUNCTIONAL EQUATION IN 2-BANACH SPACES [J]. Acta mathematica scientia,Series B, 2019, 39(2): 551-566. |
[3] | Chungen LIU, Xiaofei ZHANG. STABILITY OF SUBHARMONIC SOLUTIONS OF FIRST-ORDER HAMILTONIAN SYSTEMS WITH ANISOTROPIC GROWTH [J]. Acta mathematica scientia,Series B, 2019, 39(1): 111-126. |
[4] | Jie PAN, Li FANG, Zhenhua GUO. STABILITY OF BOUNDARY LAYER TO AN OUTFLOW PROBLEM FOR A COMPRESSIBLE NON-NEWTONIAN FLUID IN THE HALF SPACE [J]. Acta mathematica scientia,Series B, 2019, 39(1): 259-283. |
[5] | Haixiang ZHANG, Xuehua YANG, Da XU. ALTERNATING DIRECTION IMPLICIT OSC SCHEME FOR THE TWO-DIMENSIONAL FRACTIONAL EVOLUTION EQUATION WITH A WEAKLY SINGULAR KERNEL [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1689-1711. |
[6] | Liya LIU, Daqing JIANG, Tasawar HAYAT, Bashir AHMAD. DYNAMICS OF A HEPATITIS B MODEL WITH SATURATED INCIDENCE [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1731-1750. |
[7] | Huanbin XUE, Jiye ZHANG. ROBUST EXPONENTIAL STABILITY OF SWITCHED DELAY INTERCONNECTED SYSTEMS UNDER ARBITRARY SWITCHING [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1921-1938. |
[8] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1485-1514. |
[9] | Shaojun TANG, Lan ZHANG. NONLINEAR STABILITY OF VISCOUS SHOCK WAVES FOR ONE-DIMENSIONAL NONISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL PERTURBATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 973-1000. |
[10] | Yonghui ZHOU, Yunrui YANG, Kepan LIU. STABILITY OF TRAVELING WAVES IN A POPULATION DYNAMIC MODEL WITH DELAY AND QUIESCENT STAGE [J]. Acta mathematica scientia,Series B, 2018, 38(3): 1001-1024. |
[11] | Janusz BRZDȨK, Krzysztof CIEPLINSKI. ON A FIXED POINT THEOREM IN 2-BANACH SPACES AND SOME OF ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 377-390. |
[12] | P. BASKAR, S. PADMANABHAN, M. SYED ALI. FINITE-TIME H∞ CONTROL FOR A CLASS OF MARKOVIAN JUMPING NEURAL NETWORKS WITH DISTRIBUTED TIME VARYING DELAYS-LMI APPROACH [J]. Acta mathematica scientia,Series B, 2018, 38(2): 561-579. |
[13] | A. M. NAGY, N. H. SWEILAM. NUMERICAL SIMULATIONS FOR A VARIABLE ORDER FRACTIONAL CABLE EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(2): 580-590. |
[14] | Rakesh KUMAR, Anuj Kumar SHARMA, Kulbhushan AGNIHOTRI. STABILITY AND BIFURCATION ANALYSIS OF A DELAYED INNOVATION DIFFUSION MODEL [J]. Acta mathematica scientia,Series B, 2018, 38(2): 709-732. |
[15] | Wei SONG, Lin LI. CONTINUOUSLY DECREASING SOLUTIONS FOR A GENERAL ITERATIVE EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(1): 177-186. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 74
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|