Acta mathematica scientia,Series B ›› 2019, Vol. 39 ›› Issue (1): 111-118.doi: 10.1007/s10473-019-0108-7
• Articles • Previous Articles Next Articles
Chungen LIU1, Xiaofei ZHANG2
Received:
2017-11-01
Revised:
2018-04-08
Online:
2019-02-25
Published:
2019-03-13
Contact:
Chungen LIU
E-mail:liucg@nankai.edu.cn
Supported by:
Chungen LIU, Xiaofei ZHANG. STABILITY OF SUBHARMONIC SOLUTIONS OF FIRST-ORDER HAMILTONIAN SYSTEMS WITH ANISOTROPIC GROWTH[J].Acta mathematica scientia,Series B, 2019, 39(1): 111-118.
[1] Abbondandolo A. Morse Theory for Hamiltonian Systems. London:Chapman, Hall, 2001 [2] An T, Wang Z. Periodic solutions of Hamiltonian systems with anisotropic growth. Commn Pure Appl Anal, 2010, 9:1069-1082 [3] Dell'Antonio G F, D'Onofrio B, Ekeland I. Stability from index estimates for periodic solutions of Lagrangian systems. J Differ Equ, 1994, 108:170-189 [4] D'Onofio B, Ekeland I. Hamiltonian systems with elliptic periodic orbits. Nonlinear Anal, 1990, 14:11-21 [5] Ekeland I. Convexity Methods in Hamiltonian Mechanics. Berlin:Springer, 1990 [6] Fan Z, Zhang D. Stability of the brake orbits on reversible symmetric compact convex hypersurfaces in R2n. J Fixed Point Theory Appl, 2017, 19:503-527 [7] Fei G. On periodic solutions of superquadratic Hamiltonian systems. Elect J Differ Equ, 2002, 8:1-12 [8] Giradi M, Matzeu M. Dual Morse index estimates for periodic solution of Hamiltonian systems in some nonconvex superquadratic case. Nonlinear Anal, 1991, 17:481-497 [9] Li C, Liu C G. The existence of nontrivial solutions of Hamiltonian systems with Lagrangian boundary conditions. Acta Math Sci, 2009, 29B(2):313-326 [10] Liu C. The stability of subharmonic solutions for Hamiltonian systems. J Math Anal Appl, 1999, 240:491-504 [11] Liu C. The stability of the periodic solutions of second order Hamiltonian systems. Chinese Ann Math Ser B, 2000, 21:225-232 [12] Liu C. Dual Morse index for subquadratic Hamiltonian systems and the stability of the closed characteristics (Chinese). Acta Math Sinica (Chin Ser), 2001, 44:1073-1088 [13] Liu C, Long Y. Hyperbolic characteristics on starshaped surfaces. Ann Inst H Poincaré Anal Non linéaire, 1999, 16:725-746 [14] Liu C, Zhang Q. Nontrivial solutions for asymptotically linear Hamiltonian systems with Lagrangian boundary conditions. Acta Math Sci, 2012, 32B(4):1545-1558 [15] Liu C, Zhang X. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete Contin Dyn Syst, 2017, 37:1559-1574 [16] Long Y, Zhu C. Closed characteristics on compact convex hypersurfaces in R2n. Ann Math, 2002, 155:317-368 [17] Xing Q, Guo F, Zhang X. One generalized critical point theorem and its applications on super-quadratic Hamiltonian systems. Taiwanese J Math, 2016, 20:1093-1116 |
[1] | Tarik CHAKKOUR. INVERSE PROBLEM STABILITY OF A CONTINUOUS-IN-TIME FINANCIAL MODEL [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1423-1439. |
[2] | Temur JANGVELADZE, Zurab KIGURADZE, Mikheil GAGOSHIDZE. ECONOMICAL DIFFERENCE SCHEME FOR ONE MULTI-DIMENSIONAL NONLINEAR SYSTEM [J]. Acta mathematica scientia,Series B, 2019, 39(4): 971-988. |
[3] | Prondanai KASKASEM, Chakkrid KILN-EAM. HYPERSTABILITY OF THE GENERALIZED CAUCHY-JENSEN FUNCTIONAL EQUATION IN ULTRAMETRIC SPACES [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1017-1032. |
[4] | Duanxu DAI, Bentuo ZHENG. STABILITY OF A PAIR OF BANACH SPACES FOR ε-ISOMETRIES [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1163-1172. |
[5] | Yiming JIANG, Suxin WANG, Xingchun WANG. ASYMPTOTICS OF THE SOLUTIONS TO STOCHASTIC WAVE EQUATIONS DRIVEN BY A NON-GAUSSIAN LEVY PROCESS [J]. Acta mathematica scientia,Series B, 2019, 39(3): 731-746. |
[6] | Iz-iddine EL-FASSI, Hamid KHODAEI, Themistocles M. RASSIAS. APPROXIMATE SOLUTION OF A p-th ROOT FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN (2, β)-BANACH SPACES [J]. Acta mathematica scientia,Series B, 2019, 39(2): 369-381. |
[7] | Muaadh ALMAHALEBI, Abdellatif CHAHBI. APPROXIMATE SOLUTION OF P-RADICAL FUNCTIONAL EQUATION IN 2-BANACH SPACES [J]. Acta mathematica scientia,Series B, 2019, 39(2): 551-566. |
[8] | Lanxi XU, Ziyi LI. GLOBAL EXPONENTIAL NONLINEAR STABILITY FOR DOUBLE DIFFUSIVE CONVECTION IN POROUS MEDIUM [J]. Acta mathematica scientia,Series B, 2019, 39(1): 119-126. |
[9] | Jie PAN, Li FANG, Zhenhua GUO. STABILITY OF BOUNDARY LAYER TO AN OUTFLOW PROBLEM FOR A COMPRESSIBLE NON-NEWTONIAN FLUID IN THE HALF SPACE [J]. Acta mathematica scientia,Series B, 2019, 39(1): 259-283. |
[10] | Liya LIU, Daqing JIANG, Tasawar HAYAT, Bashir AHMAD. DYNAMICS OF A HEPATITIS B MODEL WITH SATURATED INCIDENCE [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1731-1750. |
[11] | Huanbin XUE, Jiye ZHANG. ROBUST EXPONENTIAL STABILITY OF SWITCHED DELAY INTERCONNECTED SYSTEMS UNDER ARBITRARY SWITCHING [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1921-1938. |
[12] | Haixiang ZHANG, Xuehua YANG, Da XU. ALTERNATING DIRECTION IMPLICIT OSC SCHEME FOR THE TWO-DIMENSIONAL FRACTIONAL EVOLUTION EQUATION WITH A WEAKLY SINGULAR KERNEL [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1689-1711. |
[13] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1485-1514. |
[14] | Yonghui ZHOU, Yunrui YANG, Kepan LIU. STABILITY OF TRAVELING WAVES IN A POPULATION DYNAMIC MODEL WITH DELAY AND QUIESCENT STAGE [J]. Acta mathematica scientia,Series B, 2018, 38(3): 1001-1024. |
[15] | Shaojun TANG, Lan ZHANG. NONLINEAR STABILITY OF VISCOUS SHOCK WAVES FOR ONE-DIMENSIONAL NONISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL PERTURBATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 973-1000. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 9
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|