[1] Ahmadi G, Shahinpoor M.Universal stability of magneto-micropolar fluid motions. Internat J Engrg Sci, 1974, 12: 657-663 [2] Rojas-Medar M A. Magneto-micropolar fluid motion: existence and uniqueness of strong solution. Math Nachr, 1997, 188: 301-319 [3] Rojas-Medar M A, Boldrini J L. Magneto-micropolar fluid motion: existence of weak solutions. Rev Mat Complut, 1998, 11(2): 443-460 [4] Ortega-Torres E E, Rojas-Medar M A. Magneto-micropolar fluid motion: global existence of strong solutions. Abstr Appl Anal, 1999, 4(2): 109-125 [5] Galdi G P.An Introduction to the Mathematical Theory of the Navier-Stokes Equations. 2nd ed. New York: Springer, 2011 [6] Chae D, Yoneda T.On the Liouville theorem for the stationary Navier-Stokes equations in a critical space. J Math Anal Appl, 2013, 405(2): 706-710 [7] Chae D.Liouville-type theorems for the forced Euler equations and the Navier-Stokes equations. Comm Math Phys, 2014, 326(1): 37-48 [8] Chae D, Wolf J.On Liouville type theorems for the steady Navier-Stokes equations in $\Bbb{R}^3$. J Differential Equations, 2016, 261(10): 5541-5560 [9] Korobkov M, Pileckas K, Russo R.The Liouville theorem for the steady-state Navier-Stokes problem for axially symmetric 3D solutions in absence of swirl. J Math Fluid Mech, 2015, 17(2): 287-293 [10] Seregin G, Wang W.Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations. St Petersburg Math J, 2020, 31: 387-393 [11] Zhang Q S.A review of results on axially symmetric Navier-Stokes equations, with addendum by X. Pan and Q. S. Zhang. arXiv:2101.04905 [12] Koch G, Nadirashvili N, Seregin G A, Šák V.Liouville theorems for the Navier-Stokes equations and applications. Acta Math, 2009, 203(1): 83-105 [13] Seregin G.Liouville type theorem for stationary Navier-Stokes equations. Nonlinearity, 2016, 29(8): 2191-2195 [14] Seregin G.Remarks on Liouville type theorems for steady-state Navier-Stokes equations. St Petersburg Math J, 2019, 30: 321-328 [15] Chae D, Wolf J. On Liouville type theorem for the stationary Navier-Stokes equations. Calc Var Partial Differential Equations, 2019, 58(3): Art 111 [16] Chae D, Kim J, Wolf J. On Liouville-type theorems for the stationary MHD and the Hall-MHD systems in $\Bbb R^3$. Z Angew Math Phys, 2022, 73(2): Art 66 [17] Zhang Z, Yang X, Qiu S.Remarks on Liouville type result for the 3D Hall-MHD system. J Partial Differ Equ, 2015, 28(3): 286-290 [18] Schulz S.Liouville type theorem for the stationary equations of magneto-hydrodynamics. Acta Math Sci, 2019, 39B(2): 491-497 [19] Yuan B, Xiao Y.Liouville-type theorems for the 3D stationary Navier-Stokes, MHD and Hall-MHD equations. J Math Anal Appl, 2020, 491(2): 124343 [20] Liu P, Liu G.Some Liouville-type theorems for the stationary density-dependent Navier-Stokes equations. J Math Phys, 2022, 63(1): 013101 [21] Kozono H, Terasawa Y, Wakasugi Y.A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions. J Funct Anal, 2017, 272(2): 804-818 [22] Chamorro D, Jarrín O, Lemarié-Rieusset P-G. Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces. Ann Inst H Poincaré C Anal Non Linéaire, 2021, 38(3): 689-710 [23] Giaquinta M.Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. New York: Princeton University Press, 1983 [24] Chae D, Kim J, Wolf J.On Liouville type theorems for the stationary non-newtonian fluid equations. arXiv:2107.09867 |