[1] Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm Pure Appl Math, 1964, 17:35-92 [2] Bian D, Li J. Finite time blow up of compressible Navier-Stokes equations on half space or outside a fixed ball. J Differential Equations, 2019, 267(12):7047-7063 [3] Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Pures Appl (9), 2004, 83(2):243-275 [4] Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differential Equations, 2003, 190(2):504-523 [5] Ding S, Huang B, Lu Y. Blowup criterion for the compressible fluid-particle interaction model in 3D with vacuum. Acta Mathematica Scientia, 2016, 36B(4):1030-1048 [6] Farwig R, Pokorný M. A linearized model for compressible flow past a rotating obstacle:analysis via modified Bochner-Riesz multipliers. Z Anal Anwend, 2015, 34(3):285-308 [7] Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol I. Springer Tracts in Natural Philosophy, Vol 38. New York:Springer-Verlag, 1994 [8] Geissert M, Heck H, Hieber H. Lp-theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle. J Reine Angew Math, 2006, 596:45-62 [9] Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. Berlin Heidelberg:Springer-Verlag, 2001 [10] Hansel T, Rhandi A. The Oseen-Navier-Stokes flow in the exterior of a rotating obstacle:the nonautonomous case. J Reine Angew Math, 2014, 694:1-26 [11] Hishida T. An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch Ration Mech Anal, 1999, 150(4):307-348 [12] Hishida T. The Stokes operator with rotation effect in exterior domains. Analysis (Munich), 1999, 19(1):51-67 [13] Hishida T. Large time behavior of a generalized Oseen evolution operator, with applications to the NavierStokes flow past a rotating obstacle. Math Ann, 2018, 372(3/4):915-949 [14] Hishida T, Shibata Y. Lp-Lq estimate of the Stokes operator and Navier-Stokes flows in the exterior of a rotating obstacle. Arch Ration Mech Anal, 2009, 193(2):339-421 [15] Huang X, Li J. Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations. Arch Rational Mech Anal, 2018, 227(3):995-1059 [16] Huang X, Li J, Xin Z. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. Comm Pure Appl Math, 2012, 65(4):549-585 [17] Kračmar S, Nečasová Š, Novotný A. The motion of a compressible viscous fluid around rotating body. Ann Univ Ferrara Sez VII Sci Mat, 2014, 60(1):189-208 [18] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heatconductive gases. J Math Kyoto Univ, 1980, 20(1):67-104 [19] Matsumura A, Nishida T. Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Comm Math Phys, 1983, 89(4):445-464 [20] Sun Y, Wang C, Zhang Z. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. J Math Pures Appl, 2011, 95(9):36-47 [21] Valli A. A correction to the paper:"An existence theorem for compressible viscous fluids"[Ann Mat Pura Appl (4) 130(1982), 197-213; MR 83h:35112]. Ann Mat Pura Appl (4), 1982, 132:399-400 [22] Valli A. An existence theorem for compressible viscous fluids. Ann Mat Pura Appl (4), 1982, 130:197-213 [23] Valli A. Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann Scuola Norm Sup Pisa Cl Sci (4), 1983, 10(4):607-647 [24] Xin Z. Blow-up of smooth solutions to the compressible Navier-Stokes equation with compact density. Comm Pure Appl Math, 1998, 51(3):229-240 [25] Ye Y. global classical solution to the Cauchy problem of the 3-D compressible Naiver-Stokes equations with density-dependent viscousity. Acta Mathematica Scientia, 2016, 36B(5):1419-1432 [26] Zhu S. Blow-up of classical solutions to the compressible magnetohydrodynamic equations with vacuum. Acta Mathematica Scientia, 2016, 36B(1):220-232 |