数学物理学报(英文版) ›› 2021, Vol. 41 ›› Issue (1): 164-176.doi: 10.1007/s10473-021-0109-1

• 论文 • 上一篇    下一篇

GLOBAL WELL-POSEDNESS FOR FRACTIONAL NAVIER-STOKES EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV-MORREY SPACES

Muhammad Zainul ABIDIN, 陈杰诚   

  1. College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
  • 收稿日期:2019-09-16 修回日期:2020-05-30 出版日期:2021-02-25 发布日期:2021-04-06
  • 通讯作者: Jiecheng CHEN E-mail:jcchen@zjnu.edu.cn
  • 作者简介:Muhammad Zainul ABIDIN,E-mail:zainbs359@gmail.com
  • 基金资助:
    The research was supported by NSFC (11671363, 11701519).

GLOBAL WELL-POSEDNESS FOR FRACTIONAL NAVIER-STOKES EQUATIONS IN VARIABLE EXPONENT FOURIER-BESOV-MORREY SPACES

Muhammad Zainul ABIDIN, Jiecheng CHEN   

  1. College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
  • Received:2019-09-16 Revised:2020-05-30 Online:2021-02-25 Published:2021-04-06
  • Contact: Jiecheng CHEN E-mail:jcchen@zjnu.edu.cn
  • About author:Muhammad Zainul ABIDIN,E-mail:zainbs359@gmail.com
  • Supported by:
    The research was supported by NSFC (11671363, 11701519).

摘要: In this paper we study the Cauchy problem of the incompressible fractional Navier-Stokes equations in critical variable exponent Fourier-Besov-Morrey space $\mathcal{F\dot{N}}_{p(\cdot),h(\cdot),q}^{s(\cdot)}(\mathbb{R}^3)$ with $s(\cdot) = 4-2\alpha-\frac{3}{p(\cdot)} $. We prove global well-posedness result with small initial data belonging to $\mathcal{F\dot{N}}_{p(\cdot),h(\cdot),q}^{4-2\alpha-\frac{3}{p(\cdot)} }(\mathbb{R}^3)$. The result of this paper extends some recent work.

关键词: fractional Navier-Stokes equations, global well-posedness, Fourier-Besov-Morrey space

Abstract: In this paper we study the Cauchy problem of the incompressible fractional Navier-Stokes equations in critical variable exponent Fourier-Besov-Morrey space $\mathcal{F\dot{N}}_{p(\cdot),h(\cdot),q}^{s(\cdot)}(\mathbb{R}^3)$ with $s(\cdot) = 4-2\alpha-\frac{3}{p(\cdot)} $. We prove global well-posedness result with small initial data belonging to $\mathcal{F\dot{N}}_{p(\cdot),h(\cdot),q}^{4-2\alpha-\frac{3}{p(\cdot)} }(\mathbb{R}^3)$. The result of this paper extends some recent work.

Key words: fractional Navier-Stokes equations, global well-posedness, Fourier-Besov-Morrey space

中图分类号: 

  • 35Q30