[1] Zhu K H.Spaces of Holomorphic Functions in the Unit Ball. New York: Springer, 2005 [2] Stević S, Ueki S. Weighted composition operators from the weighted Bergman space to the weighted Hardy space on the unit ball. Appl Math Comput, 2010, 215: 3526-3533 [3] Čućković Z, Zhao R H. Different weighted Bergman spaces and different Hardy spaces. IIlinois J of Math, 2007, 51: 479-498 [4] Ueki S, Luo L. Compact weighted composition operators and multiplication operators between Hardy spaces. Abstract and Appl Anal, 2008, 2008: Art 196498 [5] Li S L, Zhang X J. Toeplitz type operator and Gleason's problem on $H^{p,q,s}(B)$ of $\mathbb{C}^{n}$. Complex Var Ellip Equa, 2021, 66: 1362-1379 [6] Xu S, Zhang X J. Multiplier and composition operator between several holomorphic function spaces in $ \mathbb{C}^{n}$. Complex Anal Oper Theory, 2021, 15: Art 36 [7] Zhang X J, Lv R X, Tang P C. Several equivalent characterizations of general Hardy type spaces on the unit ball in $ \mathbb{C}^{n}$. Chin J Conte Math, 2019, 40: 101-114 [8] Forelli F, Rudin W. Projections on spaces of holomorphic functions on balls. Indiana Univ Math J, 1974, 24: 593-602 [9] Kolaski C. A new look at a theorem of Forelli and Rudin. Indiana Univ Math J, 1979, 28: 495-499 [10] Zhu K H. A Forelli-Rudin type theorem with applications. Complex Var, 1991, 16: 107-113 [11] Kures O, Zhu K H. A class of integral operators on the unit ball of $ \mathbb{C}^{n}$. Inte Enquat Oper Theorey, 2006, 56: 71-82 [12] Coifman R, Rochberg R. Representation theorems for holo-morphic and harmonic functions in $L^{p}$. Astérisque, 1980, 77: 11-66 [13] Hu B Y, Li S X. $N(p,q,s)$-type spaces in the unit ball of $ \mathbb{C}^{n}$ (III): Various characterizations. Public Math Debr, 2020, 97: 41-61 [14] Kaptanoğlu H. Bergman projections on Besov spaces on balls. Illinois J Math, 2005, 49: 385-403 [15] Li S L, Zhang X J, Xu S.The Bergman type operator on the $F(p,q,s)$ type spaces in $ \mathbb{C}^{n}$ (in Chinese). Chin Ann Math, 2017, 38A: 375-390 [16] Tang P C, Xu S, Zhang X J.Bergman type operators on logarithmic weight general function spaces in $ \mathbb{C}^{n}$ (in Chinese). Acta Math Sci, 2020, 40A: 33-44 [17] Ren G B, Shi J H. Bergman type operator on mixed norm spaces with applications. Chin Ann Math, 1997, 18B: 265-276 [18] Rahm R, Tchoundja E, Wick B. Weighted estimates for the Berezin transform and Bergman projection on the unit ball. Math Z, 2017, 286: 1465-1478 [19] Rudin W.Function Theory in the Unit Ball of $ \mathbb{C}^{n}$. New York: Springer-Verlag, 1980 [20] Peláez J, Rättyä J. Two weight inequality for Bergman projection. J Math Pures Appl, 2016, 105: 102-130 [21] Zhao R H. Generalization of Schur's test and its application to a class of integral operators on the unit ball of $ \mathbb{C}^{n}$. Inte Enquat Oper Theorey, 2015, 82: 519-532 [22] Zhao R H, Zhou L F. $L^{p}$-$L^{q}$ boundedness of the Forelli-Rudin type operators on the unit ball of $ \mathbb{C}^{n}$. J Funct Anal, 2022, 282: 109345 [23] Liu C W. Sharp Forelli-Rudin estimates and the norm of the Bergman projection. J Funct Anal, 2015, 268: 255-277 [24] Liu C W, Shi J J, Hu P Y. $L^{p}$-$L^{q}$ boundedness of Bergman-type operators over the Siegel upper half-space. J Math Anal Appl, 2018, 464: 1203-1212 [25] Cheng G Z, Fang X, Wang Z P, Yu J Y. The hyper-singular cousin of the Bergman projection. Trans Amer Math Soc, 2017, 369: 8643-8662 [26] Li S L. Bergman type operator on spaces of holomorphic functions in the unit ball of $ \mathbb{C}^{n}$. J Math Anal Appl, 2022, 514: 126088 [27] Zhang X J, Chen H X, Zhou M. Forelli-Rudin type operators on the space $L^{p,q,s}(B)$ and some applications. J Math Anal Appl, 2023, 525: 127305 [28] Zhou Z H, Chen R Y. Weighted composition operator from $F(p,q,s)$ to Bloch type spaces on the unit ball. Int J Math, 2012, 19: 899-926 [29] Zhang X J, Xiao J B, Hu Z J. The multipliers between the mixed norm space in $ \mathbb{C}^{n}$. J Math Anal Appl, 2005, 311: 664-674 [30] Zhang X J, Guo Y T, Chen H X, et al. Integral estimates and multiplier operators from normal weight general function spaces to Bloch type spaces. Complex Anal Oper Theory, 2023, 17: Art 88 [31] Ortega J, Fàbrega J. Corona type decomposition in some Besov spaces. Math Scand, 1996, 78: 93-111 [32] Chen H H, Gauthier P. Composition operators on $\mu$-Bloch spaces. Cana J Math, 2009, 61: 50-75 |