[1] Zhang X J, He C Z, Cao F F. The equivalent norms of F(p,q,s) space in $\mathbb{C}^n$. J Math Anal Appl, 2013, 401: 601–610 [2] Zhao R H. On a general family of function spaces. Ann Acad Sci Fenn Math Diss, 1996, 105: 110–120 [3] Jiang L J, He Y Z. Composition operators from βα to F(p,q, s). Acta Math Sci, 2003, 23B: 252–260 [4] Zhou Z H, Chen R Y. Weighted composition operator from F(p, q, s) to Bloch type spaces on the unit ball. Int J Math, 2008, 19: 899–926 [5] Yang W S. Generalized weighted composition operators from the F(p, q, s) space to the Bloch-type space. Appl Math Comput, 2012, 218: 4967–4972 [6] Zhang X J, Xiao J B. Weighted composition operator between two analytic function spaces. Adv Math (China), 2006, 35: 453–462 [7] Ye S L. Weighted composition operators from F(p, q, s) into logarithmic Bloch space. J Korean Math Soc, 2008, 45: 977–991 [8] Liang Y X, Zhou Z H, Chen R Y. Product of extended Cesàro operator and composition operator from the logarithmic Bloch-type space to F(p,q,s) space on the unit ball. J Comput Anal Appl, 2013, 15: 432–440 [9] Yang W S. Volterra composition operators from F(p, q, s) spaces to Bloch-type spaces. Bull Malay Math Sci, 2011, 34: 267–277 [10] Liang Y X. On an integral-type operator from a weighted-type space to F(p, q, s) on the unit ball. Complex Var Ellip Equ, 2015, 60: 282–291 [11] Zhang X J, Xiao J B, Hu Z H, Liu Y L, Xiong D H, Wu Y. Equivalent characterization and application of F(p,q,s) space in $\mathbb{C}^n$. Acta Math Sin, 2011, 54: 1029–1042 (in Chinese) [12] Gleason A. Finitely generated ideals in Banach algebras. J Math Mechanics, 1964, 13: 125–132 [13] Henkin G. The approximation of functions in pseudoconvex domains and a theorem of A. L. Leibenson. Bull Acad Polon Sci Ser Sci Math Astron Phys, 1971, 19: 37–42 [14] Rudin W. Function theory in the unit ball of Cn. New York: Springer-Verlag, 1980 [15] Ortega J. The Gleason’s problem in Bergman-Sobolev spaces. Complex Variables, 1992, 20: 157–170 [16] Ren G B, Shi J H. Bergman type operator on mixed norm space and applications. Chin Ann Math, 1997, 18B: 265–276 [17] Liu Y M. Boundedness of the Bergman type operators on mixed norm spaces. Proc Amer Math Soc, 2002, 130: 2363–2367 [18] Hu Z J. The Gleason’s problem on mixed norm spaces in convex domains. Sci in China, 2003, 33: 436–445 (in Chinese) [19] Kerzman N, Nagel A. Finitely generated ideals in certain function algebras. J Funct Anal, 1971, 7: 212–215 [20] Ahern P, Schneider R. Holomorphic Lipschitz functions in psendoconvex domains. Amer J Math, 1979, 101: 543–565 [21] Ren G B, Shi J H. Gleason’s problem in weighted Bergman space type on egg domains. Sci in China, 1998, 41: 225–231 [22] Zhang X J, Xiong D H, Wu Y. Solvability of Gleason’s problem on μ-Bloch spaces of several complex variables. Chin J of Conte Math, 2012, 33: 231–238 [23] Zhang X J, Li M, Guan Y. The equivalent norms and the Gleason’s problem on μ-Zygmund spaces in $mathbb{C}^n$. J Math Anal Appl, 2014, 419: 185–199 [24] Zhang X J, Guo Y T, Shang Q L, Li S L. The Gleason’s problem on F(p, q, s) type spaces in the unit ball of $mathbb{C}^n$. Complex Anal Oper Theory, 2018, 12(5): 1251–1265 [25] Zhu K H. The Bergman spaces, the Bloch space and the Gleason’s problem. Trans Amer Math Soc, 1988, 309: 253–268 [26] Zhang X J, Liu Y L, Xiao J B. The solvability of Gleason’s problem on space F(p, q, s) with several complex variables. Chin Ann Math, 2010, 31A(2): 221–228 (in Chinese) [27] Zhu K H. Spaces of Holomorphic Functions in the Unit Ball. GTM 226. New York: Springer-Verlag, 2005 [28] Zhang X J, Lv R X, Tang P C. Several equivalent characterizations of general Hardy type spaces on the unit ball in $mathbb{C}^n$. Chin J of Conte Math, 2019, 40(2): 101–114 [29] Li S L, Zhang X J. Toeplitz type operator and Gleason’s problem on Hp,q,s (B) of $mathbb{C}^n$. Complex Variables and Elliptic Equations, 2021, 66(8): 1362–1379 [30] Zhang X J, Xiao J B, Hu Z J. The multipliers between the mixed norm space in $mathbb{C}^n$. J Math Anal Appl, 2005, 311: 664–674 |