数学物理学报(英文版) ›› 2023, Vol. 43 ›› Issue (5): 2215-2233.doi: 10.1007/s10473-023-0517-5
收稿日期:
2021-09-28
修回日期:
2023-05-02
出版日期:
2023-10-25
发布日期:
2023-10-25
Mingjuan Chen1, Shuai Zhang2
Received:
2021-09-28
Revised:
2023-05-02
Online:
2023-10-25
Published:
2023-10-25
Contact:
Shuai Zhang, E-mail: 1301110021@pku.edu.cn
About author:
Mingjuan Chen, E-mail: mjchen@jnu.edu.cn
中图分类号:
. [J]. 数学物理学报(英文版), 2023, 43(5): 2215-2233.
Mingjuan Chen, Shuai Zhang. ALMOST SURE GLOBAL WELL-POSEDNESS FOR THE FOURTH-ORDER NONLINEAR SCHRÖDINGER EQUATION WITH LARGE INITIAL DATA*[J]. Acta mathematica scientia,Series B, 2023, 43(5): 2215-2233.
[1] Ben-Artzi M, Koch H, Saut J C. Dispersion estimates for fourth order Schrödinger equations. C R Acad Sci Paris Sér I Math, 2000, 330(2): 87-92 [2] Bényi Á, Oh T, Pocovnicu O. Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS//Balan R, Begue M, Benedetto J, et al. Excursions in Harmonic Analysis, Volume 4. Applied and Numerical Harmonic Analysis. Switzerland: Birkhäuser, 2015: 3-25 [3] Bényi Á, Oh T, Pocovnicu O. On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb{R}^d, \ d\geq3 $. Trans Amer Math Soc Ser B, 2015, 2(1): 1-50 [4] Bourgain J. Periodic nonlinear Schrödinger equation and invariant measures. Comm Math Phys, 1994, 166(1): 1-26 [5] Bourgain J. Invariant measures for the {$2$}D-defocusing nonlinear Schrödinger equation. Comm Math Phys, 1996, 176(2): 421-445 [6] Bringmann B. Almost sure scattering for the energy critical nonlinear wave equation. Amer J Math, 2021, 143(6): 1931-1982 [7] Burq N, Tzvetkov N. Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent Math, 2008, 173(3): 449-475 [8] Burq N, Tzvetkov N. Random data Cauchy theory for supercritical wave equations. II. A global existence result. Invent Math, 2008, 173(3): 477-496 [9] Chen M, Zhang S. Random data cauchy problem for the fourth order Schrödinger equation with the second order derivative nonlinearities. Nonlinear Anal, 2020, 190: Art 111608 [10] Christ F M, Weinstein M I. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J Funct Anal, 2013, 16(1): 1-30 [11] Da Prato G, Debussche A. Two-dimensional Navier-Stokes equations driven by a space-time white noise. J Funct Anal, 2002, 196: 180-210 [12] Deng Y, Nahmod A, Yue H.Invariant Gibbs measures and global strong solutions for nonlinear Schrödinger equations in dimension two. arXiv: 1910.08492 [13] Deng Y, Nahmod A, Yue H. Random tensors, propagation of randomness, nonlinear dispersive equations. Invent Math, 2022, 228(2): 539-686 [14] Dinh V D. Well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation. Bull Belg Math Soc Simon Stevin, 2018, 25: 415-437 [15] Dodson B Lührmann J, Mendelson D. Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data. Amer J Math, 2020, 142(2): 475-504 [16] Dodson B Lührmann J, Mendelson D. Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation. Adv Math, 2019, 347: 619-676 [17] Dysthe K B. Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc R Soc Lond A, 1979, 369(1736): 105-114 [18] Hadac M, Herr S, Koch H. Well-posedness and scattering for the KP-II equation in a critical space. Ann Inst H Poincaré Anal Non Linéaire, 2009, 26(3): 917-941 [19] Herr S, Tataru D, Tzvetkov N. Global well-posedness of the energy-critical nonlinear Schrödinger equation with small initial data in {$H^1(\mathbb{T}^3)$}. Duke Math J, 2011, 159(2): 329-349 [20] Hirayama H, Okamoto M. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete Contin Dyn Syst, 2016, 36(12): 6943-6974 [21] Huo Z H, Jia Y L. A refined well-posedness for the fourth-order nonlinear Schrödinger equation related to the vortex filament. Comm Partial Differential Equations, 2007, 32(10): 1493-1510 [22] Ionescu A D, Pausader B. Global well-posedness of the energy-critical defocusing NLS on {$\mathbb{R}\times \mathbb{T}^3$}. Comm Math Phys, 2012, 312(3): 781-831 [23] Ilan B, Fibich G, Papanicolaou G. Self-focusing with fourth-order dispersion. SIAM J Appl Math, 2002, 62(4): 1437-1462 [24] Karpman V I. Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations. Physical Review E, 1996, 53(2): 1336-1339 [25] Karpman V I, Shagalov A G. Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion. Phys D, 2000, 144(1/2): 194-210 [26] Kenig C, Mendelson D.The focusing energy-critical nonlinear wave equation with random initial data. Int Math Res Not, 2021, (19): 14508-14615 [27] Killip R, Murphy J, Visan M. Almost sure scattering for the energy-critical NLS with radial data below $H^1(\mathbb{R}^4)$. Comm Partial Differential Equations, 2019, 44(1): 51-71 [28] Lührmann J, Mendelson D. Random data Cauchy theory for nonlinear wave equations of power-type on {$\mathbb{R}^3$}. Comm Partial Differential Equations, 2014, 39(12): 2262-2283 [29] Mendelson D. Symplectic non-squeezing for the cubic nonlinear Klein-Gordon equation on {$\mathbb{T}^3$}. J Funct Anal, 2017, 272(7): 3019-3092 [30] Pausader B. Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case. Dyn Partial Differ Equ, 2007, 4(3): 197-225 [31] Pausader B. The cubic fourth-order Schrödinger equation. J Funct Anal, 2009, 256(8): 2473-2517 [32] Pocovnicu O. Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb{R}^d$, $d=4$ and $5$. J Eur Math Soc, 2017, 19(8): 2521-2575 [33] Ren Y Y, Li Y S, Wei Y. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Commun Pure Appl Anal, 2018, 17(2): 487-504 [34] Ruzhansky M, Wang B X, Zhang H. Global well-posedness and scattering for the fourth order nonlinear Schrödinger equations with small data in modulation and Sobolev spaces. J Math. Pures Appl, 2016, 105(1): 31-65 [35] Stein E M.Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ: Princeton University Press, 1993 [36] Tao T.Nonlinear dispersive equations. Local and global analysis. CBMS Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Sciences, Washington, DC; Providence, RI: American Mathematical Society, 2006 [37] Zhang S, Xu S P. The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities. Commun Pure Appl Anal, 2020, 19(6): 3367-3385 |
|