[1] Berestycki H, Cazenave T. Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéairees. C R Acad Sci Paris, 1981, 293:489-492
[2] Berestycki H, Lions P L. Nonlinear scalar field equations, I. Existence of a ground state. Arch Rat Mech Anal, 1983, 82:313-345
[3] Berestycki H, Lions P L. Nonlinear scalar field equations, II. Existence of infinitely many solutions. Arch Rat Mech Anal, 1983, 82:347-375
[4] Cazenave T, Lions P L. Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun Math Phys, 1982, 85:549-561
[5] Dai J J, He Q H. Nodal bound states with clustered spikes for nonlinear Schrödinger equations. Acta Math Sci, 2014, 34B(6):1892-1906
[6] Dendy R O. Plasma Dynamics. Oxford:Oxford University Press, 1990
[7] Gan Z H, Zhang J. Sharp threshold of global existence and instability of stangding wave for a Davey-Stewartson System. Commun Math Phys, 2008, 283:93-125
[8] Gan Z H, Zhang J. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Dis Cont Dyn Syst, 2012, 32(3):827-846
[9] Gan Z H, Zhang J. Nonlocal nonlinear Schrödinger equations in R3. Arch Rational Mech Anal, 2013, 209:1-39
[10] Grillakis M. Linearized instability for nonlinear Schrödinger and Klein-Gordon equations. Comm Pure Appl Math, 1988, 41:747-774
[11] Grillakis M, Shatah J, Strauss W. Stability theory of solitary waves in the presence of symmetry, I*. J Funct Anal, 1987, 74:160-197
[12] Jiang X, Gan Z H. Collapse for the generalized three-dimensional nonlocal nonlinear Schrödinger equations. Adv Nonlinear Stud, 2014, 14:777-790
[13] Jones C. An instability mechanism for radically symmetric standing waves of a nonlinear Schrödinger equation. J Differential Equations, 1988, 71:34-62
[14] Kono M, Skoric M M, Ter Haar D. Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma. J Plasma Phys, 1981, 26:123-146
[15] Laurey C. The Cauchy problem for a generalized Zakharov system. Diff Integral Equ, 1995, 8(1):105-130
[16] Liu Z X. On a class of inhomogeneous energy-critical focusing nonlinear Schrödinger equations. Acta Math Sci, 2013, 33B(6):1522-1530
[17] Miao C X. Harmonic Analysis and Applications to Partial Differential Equations. Monographs on Modern Pure Mathematics No 89. 2nd ed. Beijing:Science Press, 2004
[18] Miao C X. The Modern Method of Nonlinear Wave Equations. Lectures in Contemporary Mathematics, No 2. Beijing:Science Press, 2005
[19] Miao C X, Zhang B. Harmonic Analysis Method of Partial Differential Equations. Monographs on Modern Pure Mathematics, No 117. 2nd ed. Beijing:Science Press, 2008
[20] Shatah J, Strauss W. Instability of nonlinear bound states. Commun Math Phys, 1985, 100:173-190
[21] Strauss W A. Existence of solitary waves in high dimensions. Commun Math Phys, 1977, 55:149-162
[22] Wan L L, Tang C L. Existence of solutions for non-periodic superlinear Schrödinger equations without (AR) condition. Acta Math Sci, 2012, 32B(4):1559-1570
[23] Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Commun Math Phys, 1983, 87:567-576
[24] Weinstein M I. Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun Pure Appl Math, 1986, 39:51-68
[25] Xu J, Fan E G. A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equations. Acta Math Sci, 2014, 34B(4):973-994
[26] Zhang J. Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potentia. Commun PDE, 2005, 30:1429-1443
[27] Zakharov V E. The collapse of Langmuir waves. Soviet Phys, JETP, 1972,35:908-914
[28] Zakharov V E, Musher S L, Rubenchik A M. Hamiltonian approach to the description of nonlinear plasma phenomena. Physics Reports, 1985, 129(5):285-366 |