[1] Fordy A, Gibbons J. Factoization of operators. II. J Math Phy, 1981, 22(6): 1170–1175
[2] Wang J P. A list of 1 + 1 dimensional integrable equations and their properties. J Nonlinear Math Phy, 2002, 9: 213–233
[3] Fermi E, Amaldi E, et al. Collected Papers of Enrico Fermi: Volume II. Chicago: University of Chicago Press, 1965
[4] Dodd R K, Eilbeck J C, Gibbon J D, et al. Solitons and Nonlinear Wave Equations. New York: Academic Press, 1983
[5] Wahlquist H D, Estabrook F B. Prolongation structures of nonlinear evolution equations. J Math Phy, 1975, 16(1): 1–7
[6] Wahlquist H D, Estabrook F B. Prolongation structures of nonlinear evolution equations, II. J Math Phy, 1976, 17(7): 1293–1297
[7] Finley J D, Mclver J K. Prolongations to Higher Jets of Estabrook-Wahlquist Coverings for PDEs. Acta Appl Math, 1993, 32: 197–225
[8] Igonin S, Martini R. Prolongation structure of the Krichever-Novikov equation. J Physics A: Mathematical and General, 2002, 35: 9801–9810
[9] Dodd R, Fordy A. The prolongation structures of quasi-polynomial flows. Proc R Soc Lond A, 1983, 385(1789): 389–429
[10] Pirani F, Robinson D, Shadwick W. Local Jet Bundle Formulation of B¨acklund Transformations. Mathematical
Physics Studies, Vol 1. Springer, 1979
[11] Harrison B K. Unification of Ernst-equation B¨acklund transformations using a modifiedWahlquist-Estabrook
technique. J Math Phy, 1983, 24(8): 2178–2187
[12] Kersten P H M. Infinitesimal symmetries: a computational approach. Centrum voor Wiskunde en Informatica, 1987
[13] Gragert P K H, Kersten P H M, Martini R. Symbolic computations in applied differential geometry. Acta Appl Math, 1983, 1(1): 43–77
[14] Corones J P, Testa F J. Pseudopotentials and Their Applications//Miura R M. B¨acklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications. Lecture Notes in Mathematics Volume 515. New York: Springer-Verlag, 1976: 184–198
[15] Corones J P. Solitons, pseudopotentials, and certain Lie algebras. J Math Phy, 1977, 18(1): 163–164
[16] Glass E N, Robinson D C. A nilpotent prolongation of the Robinson-Trautman equation. J Math Phy, 1984, 25(12): 3342–3346
[17] Hoenselaers C, Schief W K. Prolongation structures for Harry Dym type equations and B¨acklund transformations
of CC ideals. J Physics A: Mathematical and General, 1992, 25(3): 601–622
[18] Krasilshchik I S, Vinogradov A M. Nonlocal trends in the geometry of differential equations. Acta Appl Math, 1989, 15(1/2): 161–209
[19] Bocharov A V, Krasil’shchik I S, Vinogradov A M. Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. American Mathematical Society, 1999
[20] Krasil’shchik I S, Lychagin V V, Vinogradov A M. Geometry of Jet Spaces and Nonlinear Partial Differential
Equations. New York: Gordon and Breach, 1986
[21] Krasil’shchik J, Verbovetsky A. Homological Methods in Equations of Mathematical Physics. Advanced Texts in Mathematics, Open Education & Sciences, 1998
[22] Krasil’shchik I S, Kersten P H M. Symmetries and Recursion Operators for Classical and Supersymmetric
Differential Equations. Springer, 2000
[23] Krasil’shchik J, Verbovetsky A. Geometry of jet spaces and integrable systems. Journal of Geometry and Physics, 2011, 61(9): 1633–1674
[24] Igonin S. Coverings and fundamental algebras for partial differential equations. Journal of Geometry and Physics, 2006, 56(6): 939–998
[25] Igonin S. Analogues of coverings and the fundamental group for the category of partial differential equations.
http://www.staff.science.uu.nl/igoni101/preprints/cfg.pdf |