[1] Cazenave T. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. Courant Institute of Mathematical Sciences:American Mathematical Society, 2003 [2] Colin M, Colin T, Ohta M. Instability of standing waves for a system of nonlinear Schrödinger equations with three-wave interaction. Funkcial Ekvac, 2009, 52:371-380 [3] Colin M, Di Menza L, Saut J C. Solitons in quadratic media. Nonlinearity, 2016, 29:1000-1035 [4] Dinh V D. Existence, stability of standing waves and the characterization of finite time blow-up solutions for a system NLS with quadratic interaction. Nonlinear Anal, 2020, 190:111589 [5] Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J Math Phys, 1977, 18:1794-1797 [6] Hamano M. Global dynamics below the ground state for the quadratic Schrödinger system in 5D. Preprint arXiv:1805.12245, 2018 [7] Hoshino G, Ozawa T. Analytic smoothing effect for a system of nonlinear Schrödinger equations. Differ Equ Appl, 2013, 5:395-408 [8] Hoshino G, Ozawa T. Analytic smoothing effect for a system of Schrödinger equations with two wave interaction. Adv Differential Equations, 2015, 20:697-716 [9] Hoshino G. Space-time analytic smoothing effect for global solutions to a system of nonlinear Schrödinger equations with large data. Ann Henri Poincaré, 2018, 19:2101-2114 [10] Hayashi N, Li C, Naumkin P I. On a system of nonlinear Schrödinger equation in 2D. Differential Integral Equations, 2011, 24:417-434 [11] Hayashi N, Li C, Naumkin P I. Modified wave operator for a system of nonlinear Schrödinger equations in 2D. Commun Partial Differential Equations, 2012, 37:947-968 [12] Hayashi N, Li C, Ozawa T. Small data scattering for a system of nonlinear Schrödinger equations. Differ Equ Appl, 2011, 3:415-426 [13] Hayashi N, Ozawa T, Tanaka K. On a system of nonlinear Schrödinger equations with quadratic interaction. Ann Inst H Poincaré Anal Non Linéaire, 2013, 30:661-690 [14] Ogawa T, Uriya K. Final state problem for a quadratic nonlinear Schrödinger system in two space dimensions with mass resonance. J Differential Equations, 2015, 258:483-583 |