数学物理学报(英文版) ›› 2023, Vol. 43 ›› Issue (4): 1881-1914.doi: 10.1007/s10473-023-0425-8
Minghong XIE1, Zhong TAN2,3,†
收稿日期:
2021-12-07
修回日期:
2022-05-04
发布日期:
2023-08-08
通讯作者:
†Zhong TAN, E-mail: 作者简介:
Minghong XIE, E-mail: xiemh0622@hotmail.com
基金资助:
Minghong XIE1, Zhong TAN2,3,†
Received:
2021-12-07
Revised:
2022-05-04
Published:
2023-08-08
Contact:
†Zhong TAN, E-mail: About author:
Minghong XIE, E-mail: xiemh0622@hotmail.com
Supported by:
摘要: We study a spatiotemporal EIT problem with a dynamical boundary condition for the fractional Dirichlet-to-Neumann operator with a critical exponent. There are three major ingredients in this paper. The first is the finite time blowup and the decay estimate of the global solution with a lower-energy initial value. The second ingredient is the Lq(2≤q<∞) estimate of the global solution applying the Moser iteration, which allows us to show that any global solution is a classical solution. The third, which is the main ingredient of this paper, explores the long time asymptotic behavior of global solutions close to the stationary solution and the bubbling phenomenons by means of a concentration compactness principle.
Minghong XIE, Zhong TAN. THE GLOBAL SOLUTION AND BLOWUP OF A SPATIOTEMPORAL EIT PROBLEM WITH A DYNAMICAL BOUNDARY CONDITION∗[J]. 数学物理学报(英文版), 2023, 43(4): 1881-1914.
Minghong XIE, Zhong TAN. THE GLOBAL SOLUTION AND BLOWUP OF A SPATIOTEMPORAL EIT PROBLEM WITH A DYNAMICAL BOUNDARY CONDITION∗[J]. Acta mathematica scientia,Series B, 2023, 43(4): 1881-1914.
[1] Abels H, Butz J. Short time existence for the curve diffusion flow with a contact angle. J Differential Equations, 2019, 268(1): 318-352 [2] Abramowitz M, Stegun I A.Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington DC: National Bureau of Standards, 1964 [3] Albuquerque Y F, Laurain A, Sturm K. A shape optimization approach for electrical impedance tomography with point measurements. Inverse Problems, 2020, 36(9): 095006 [4] Amann H, Fila M. A Fujita-type theorem for the Laplace equation with a dynamical boundary condition. Acta Math Univ Comeniane, 1997, 56(2): 321-328 [5] Arendt W, Ter Elst A F M. The Dirichlet-to-Neumann operator on rough domains. J Differential Equations, 2011, 251(8): 2100-2124 [6] Arendt W, Ter Elst A F M, Warma M. Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Comm Partial Differential Equations, 2018, 43(1): 1-24 [7] Barrios B, Colorado E, Pablo A D, Sˊanchez U. On some critical problems for the fractional Laplacian operator. J Differential Equations, 2012, 252(11): 6133-6162 [8] Biler P, Pilarczyk D. Around a singular solution of a nonlocal nonlinear heat equation. Nonlinear Differ Equ Appl, 2019, 26(1): 1-24 [9] Borcea L, Gray G A, Zhang Y. Variationally constrained numerical solution of electrical impedance tomography. Inverse Problems, 2003, 19(5): 1159-1184 [10] Brándle C, Colorado E, Pablo A D. A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2013, 143(1): 39-71 [11] Brezis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3): 486-486 [12] Brezis H. Elliptic equations with limiting Sobolev exponents-the impact of topology. Comm Pure Appl Math, 1986, 39(S1): S17-S39 [13] Cabré X, Tan J G. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv Math, 2010, 224(5): 2052-2093 [14] Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32(8): 1245-1260 [15] Capella A, Dávila J Dupaigne L,et al. Regularity of radial extremal solutions for some non-local semilinear equations. Comm Partial Differential Equations,2011, 36(8): 1353-1384 [16] Cazenave T, Lions P L. Solutions globales d'Equations de la chaleur semilineaires. Commun in Partial Differential Equations, 1984, 9(10): 955-978 [17] Chen G Y, Wei J C, Zhou Y F. Finite time blow-up for the fractional critical heat equation in Rn. Nonlinear Anal, 2019, 193: 111420 [18] Chen W X, Li C M, Ou B. Classification of solutions for an integral equation. Comm Pure Appl Math, 2006, 59(3): 330-343 [19] Chen W X, Qi S J. Direct methods on fractional equations. Discrete Contin Dyn Syst, 2019, 39(3): 1269-1310 [20] Choi W, Kim S, Lee K A. Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian. J Funct Anal, 2014, 266: 6531-6598 [21] Cherif M A, El Arwadi T, Emamirad H, Sac-épée J M. Dirichlet-to-Neumann semigroup acts as a magnifying glass. Semigroup Forum,2014, 88(3): 753-767 [22] Daners D. Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator. Positivity, 2014, 18: 235-256 [23] Du S Z. On partial regularity of the borderline solution of the semilinear parabolic equation with critical growth. Adv Differential Equations, 2013, 18(1/2): 147-177 [24] Escher J. Nonlinear elliptic systems with dynamic boundary conditions. Math Z, 1992, 210: 413-439 [25] Fabes E B, Kenig C E, Serapioni R P. The local regularity of solutions of degenerate elliptic equations. Comm Partial Differential Equations, 1982, 7(1): 77-116 [26] Fang F, Tan Z. Heat flow for Dirichlet-to-Neumann operator with critical growth. Adv Math, 2018, 328: 217-247 [27] Fila M, Ishige K, Kawakami T. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Comm Pure Appl Math, 2012, 11(3): 1285-1301 [28] Fila M, Quittner P. Global solutions of the Laplace equation with a nonlinear dynamical boundary condition. Math Methods Appl Sci, 1997, 20: 1325-1333 [29] Fino A, Karch G. Decay of mass for nonlinear equations with fractional Laplacian. Monatshefte fÜr Mathmatik,2010, 160(4): 375-384 [30] Fujita H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α. J Fac Sci Univ Tokyo, 1966, 13: 109-124 [31] Giga Y. A bound for global solutions of semilinear heat equations. Comm Math Phys, 1986, 103: 415-421 [32] Guedda M, Kirane M. A note on nonexistence of global solutions to a nonlinear integral equation. Bull Belg Math Soc Simon Stevin, 1999, 6(4): 491-497 [33] Hintermann T. Evolution equation with dynamic boundary conditions. Proc Roy Soc Edinburgh Sect A, 1989, 135: 43-60 [34] Ishii H. Asymptotic stability and blowing up of solutions of some nonlinear equations. J Differential Equations, 1977, 26(2): 291-319 [35] Kirane M. Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type. Hokkaido Math J, 1992, 21: 221-229 [36] Koleva M. On the computation of blow-up solutions of elliptic equations with semilinear dynamical boundary conditions. Lect Notes Comput Sci, 2004, 2907: 473-480 [37] Koleva M, Vulkov L. Blow-up of continuous and semidiscrete solutions to elliptic equations with semilinear dynamical boundary conditions of parabolic type. J Comput Appl Math, 2007, 202: 414-434 [38] LadyŽenskaja O A, Solonnikov V A, Ural'ceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence RI: American Mathematical Society, 1968 [39] Leseduarte M C, Quintanilla R. Phragmén-Lindelöf alternative for the Laplace equation with dynamic boundary conditions. J Appl Anal Comput,2017, 7(4): 1323-1335 [40] Lions J L.Quelques Méthodes de Résolutions des Problémes aux Limites Non Linéaires (French). Paris: Dunod, 1969: 134-140 [41] Meyries M.Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors[D]. Karlsruhe: Karlsruher Institut fÜr Technologie, 2001 [42] Musso M, Sire Y, Wei J, Zhou Y. Infinite time blow-up for the fractional heat equation with critical exponent. Math Ann, 2019, 375(1/2): 361-424 [43] Ni W M, Sacks P E, Tavantzis J. On the asymptotic behavior of solutions of certain quasilinear equations of parabolic type. J Differential Equations, 1984, 54: 97-120 [44] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22(3/4): 273-303 [45] Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367: 67-102 [46] Sugitani S. On nonexistence of global solutions for some nonlinear integral equations. Osaka J Math, 1975, 12: 45-51 [47] Tan J G. Positive solutions for non local elliptic problems. Discrete Contin Dyn Syst, 2013, 33(2): 837-859 [48] Tan Z. Global solution and blow-up of semilinear heat equation with critical Sobolev exponent. Comm Partial Differential Equations, 2001, 26: 717-741 [49] Touzani R, Rappaz J.Mathematical Models for Eddy Currents and Magnetostatics. Heidelberg: Springer, 2014 [50] Uhlmann G. Topical review: electrical impedance tomography and Calderón's problem. Inverse Problems,2009, 25: 123011 [51] Vitillaro E. On the Laplace equation with non-linear dynamical boundary conditions. Proc London Math Soc, 2006 93(2): 418-446 [52] Warma M. On a fractional (s, p)-Dirichlet-to-Neumann operator on bounded Lipschitz domains. J Ellipt Parab Equ, 2018, 4(8): 223-269 [53] Weissler F B. Local existence and nonexistence for semilinear parabolic equation in Lp. Indiana Uni Math J, 1980, 29(1): 79-102 [54] Yin Z. Global existence for elliptic equations with dynamic boundary conditions. Arch Math, 2003, 81(5): 567-574 [55] Zhang T T, Jang G Y, Oh T I, et al. Source consistency electrical impedance tomography. SIAM J Appl Math, 2020, 80(1): 499-520 [56] Zhou L, Harrach B, Seo J K. Monotonicity-based electrical impedance tomography for lung imaging. Inverse Problem, 2018, 34(4): 045005 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 39
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|