数学物理学报(英文版) ›› 2023, Vol. 43 ›› Issue (4): 1717-1734.doi: 10.1007/s10473-023-0416-9
Fen HE1, Zhen WANG1,†, Tingting CHEN2
收稿日期:
2022-01-05
修回日期:
2022-06-07
发布日期:
2023-08-08
通讯作者:
†Zhen WANG, E-mail: 作者简介:
Fen HE, E-mail: fenhe.zky@foxmail.com;Tingting CHEN, E-mail: chenting0617@163.com
基金资助:
Fen HE1, Zhen WANG1,†, Tingting CHEN2
Received:
2022-01-05
Revised:
2022-06-07
Published:
2023-08-08
Contact:
†Zhen WANG, E-mail: About author:
Fen HE, E-mail: fenhe.zky@foxmail.com;Tingting CHEN, E-mail: chenting0617@163.com
Supported by:
摘要: In this paper, we study the shock waves for a mixed-type system from chemotaxis. We are concerned with the jump conditions for the left state which is located in the elliptical region and the right state in the hyperbolic region. Under the generalized entropy conditions, we find that there are different shock wave structures for different parameters. To guarantee the uniqueness of the solutions, we obtain the admissible shock waves which satisfy the generalized entropy condition in both parameters. Finally, we construct the Riemann solutions in some solvable regions.
Fen HE, Zhen WANG, Tingting CHEN. THE SHOCK WAVES FOR A MIXED-TYPE SYSTEM FROM CHEMOTAXIS∗[J]. 数学物理学报(英文版), 2023, 43(4): 1717-1734.
Fen HE, Zhen WANG, Tingting CHEN. THE SHOCK WAVES FOR A MIXED-TYPE SYSTEM FROM CHEMOTAXIS∗[J]. Acta mathematica scientia,Series B, 2023, 43(4): 1717-1734.
[1] Carrillo J A, Li J, Wang Z A. Boundary spike-layer solutions of the singular Keller-Segel system: Existence and stability. Proc Lond Math Soc, 2021, 122: 42-68 [2] Chen G Q, Liu H. Formation of delta shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM Journal on Mathematical Analysis, 2003, 34: 925-938 [3] Delacruz R. Riemann problem for a 2×2 hyperbolic system with linear damping. Acta Appl Math, 2020, 170: 631-647 [4] Fan J, Zhao K. Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis. J Math Anal Appl, 2012, 394: 687-695 [5] Fontelos M A, Friedman A, Hu B. Mathematical analysis of a model for the initiation of angiogenesis. SIAM J Math Anal, 2002, 33: 1330-1355 [6] Goatin P, LeFloch P G. The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann Inst Henri Poincare Anal Non Lineaire, 2004, 21: 881-902 [7] Guo J, Xiao J X, Zhao H J, et al. Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Mathematica Scientia, 2009, 29B: 629-641 [8] Horstmann D. From1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2003, 105: 103-165 [9] Hou Q Q, Wang Z A, Zhao K. Boundary layer problem on a hyperbolic system arising from chemotaxis. J Differential Equations, 2016, 261: 5035-5070 [10] Hsiao L, De Mottoni P. Existence and uniqueness of the Riemann problem for a nonlinear system of conservation laws of mixed type. Transactions of the American Mathematical Society, 1990, 332: 121-158 [11] Jin H Y, Li J, Wang Z A. Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity. J Differential Equations, 2013, 255: 193-219 [12] Keyfitz B L. Change of type in three-phase flow: A simple analogue. J Differential Equations, 1989, 80: 280-305 [13] Keyfitz B L. Admissibility conditions for shocks in conservation laws that change type. SIAM Journal on Mathematical Analysis, 1991, 22: 1284-1292 [14] Keyfitz B L, Kranzer H C. The Riemann problem for a class of hyperbolic conservation laws exhibiting a parabolic degeneracy. J Differential Equations, 1983, 47: 35-65 [15] Keller E F, Segel L A. A model for chemotaxis. J Theoretical Biology, 1971, 30: 225-234 [16] Keller E F, Segel L A. Traveling bands of chemotactic bacteria: a theoretical analysis. J Theoretical biology, 1971, 30: 235-248 [17] Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theoretical Biology, 1970, 26: 399-415 [18] Lax P D. Hyperbolic systems of conservation laws. II. Comm Pure Appl Math, 1957, 10: 537-566 [19] Levine H A, Sleeman B D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J Appl Math, 1997, 57: 683-730 [20] Li H C, Zhao K. Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. J Differential Equations, 2015, 258: 302-338 [21] Li T, Pan R, Zhao K. Global dynamics of a hyperbolic-parabolic model arising from chemotaxis. SIAM J Appl Math, 2012, 72: 417-443 [22] Li J, Wang L, Zhang K. Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis. Math Methods Appl Sci, 2013, 36: 1862-1877 [23] Li T, Wang Z A.Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis. Math Models Methods Appl Sci, 2010, 20: 1967-1998 [24] Li T, Wang Z A. Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis. J Differential Equations, 2011, 250: 1310-1333 [25] Li T, Wang Z A. Nonlinear stability of travelling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM J Appl Math, 2009, 70: 1522-1541 [26] Li T, Liu H, Wang L. Oscillatory traveling wave solutions to an attractive chemotaxis system. J Differential Equation, 2016, 261: 7080-7098 [27] Li T, Mathur N. Rienmann problem for a non-strictly hyperbolic system in chemotaxis. Discrete and Continuous Dynamical System Series B, 2022, 27(4): 2173-2187 [28] Li J Y, Li T, Wang Z A. Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity. Math Models Methods Appl Sci, 2014, 24: 2819-2849 [29] Mailybaev A A, Marchesin D. Lax shocks in mixed-type systems of conservation laws. Journal of Hyperbolic Differential Equations, 2008, 5: 295-315 [30] Marchesin D, Paes-Leme P J. A Riemann problem in gas dynamics with bifurcation//Witten M. Hyperbolic Partial Differential Equations. New York: Pergamon, 1986: 433-455 [31] Martinez V R, Wang Z, Zhao K. Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology. Indiana Univ Math J, 2018, 67: 1383-1424 [32] Othmer H G, Stevens A. Aggregation, blowup,collapse: the ABC's of taxis in reinforced random walks. SIAM J Appl Math, 1997, 57: 1044-1081 [33] Peng H, Wang Z A, Zhao K, et al. Boundary layers and stabilization of the singular Keller-Segel system. Kinet Relat Models, 2018, 11: 1085-1123 [34] Peng H, Wen H, Zhu C. Global well-posedness and zero diffusion limit of classical solutions to 3D conservation laws arising in chemotaxis. Z Angew Math Phys, 2014, 65: 1167-1188 [35] Rascle M. The Riemann problem for a nonlinear non-strictly hyperbolic system arising in biology. Computers and Mathematics with Applications, 1985, 11: 223-238 [36] Smoller J.Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1994 [37] Wang Z A, Hillen T. Shock formation in a chemotaxis model. Mathematical Methods in the Applied Sciences, 2010, 31: 45-70 [38] Wang Z A, Xiang Z, Yu P. Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis. J Differential Equations, 2016, 260: 2225-2258 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 48
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|