[1] Adams R A. Sobolev Space. New York: Academic Press, 1975
[2] Antontsev S N, Kazhikhov A V, Monakhov V N. Boundary Vaule Problems in Mechanics of Nonhomogeneous Fluids. Amsterdan: North-Holland, 1990
[3] Bittencourt J A. Fundamentals of Plasma Physics. 3rd ed. New York: Spinger-Verlag, 2004
[4] Boyd T J M, Sanderson J J. The Physics of Plasmas. Cambridge: Cambridge University Press, 2003
[5] Cabannes H. Theoretical Magnetofluiddynamics. New York: Academic Press, 1970
[6] Caflisch R E, Klapper I, Steele G. Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD.
Comm Math Phys, 1997, 184: 443--455
[7] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford: Oxford University Press, 1961
[8] Diaz J I, Lerena M B. On the inviscid and non-resistive limit for the equations of incompressible magnetohydrodynamics. Math
Model Meth Appl Sci, 2003, 12: 1401--1419
[9] Duvaut G, Lions J L. Inequations en thermoelasticite et magnetohydrodynamique. Arch Rational Mech Anal, 1972, 46: 241--279
[10] Freidberg J P. Ideal Magnetohydrodynamics. New York, London: Plenum Press, 1987
[11] Gibbon J D, Ohkitani K. Singularity formation in a class of stretched solutions of the equations for ideal magneto-hydrodynamics. Nonlinearity, 2001, 14: 1239--1264
[12] Gurnett D A, Bhattacharjee A. Introduction to Plasma Physics. Cambridge: Cambridge University Press, 2005
[13] Kato T. Nonstationary flows of viscous and ideal fluids in ${\R}^3$. J Funct Anal, 1972, 9: 296--305
[14] Kato T. Quasi-linear equations of evolution, with applications to partial differential equations. Lect Notes in Math, 1975, 48: 25--70
[15] Kato T, Ponce G. Commutator estimates and Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 891--907
[16] Klainerman S, Majda A. Singular limits of quasilinear hyperbolic systme with large parameters and the incompressible limits of compressible fluids. Comm Pure Appl Math, 1981, 34: 481--524
[17] Kulikovskiy A F, Lyubimov G A. Magnetohydrodynamics. Reading MA: Addison-Wasley, 1965
[18] Itoh S. On the vanishing viscosity in the Cauchy problem for the equations of a nonhomogeneous incompressible fluids. Glasg
Math J, 1994, 36: 123--129
[19] Itoh S, Tani A. Solvability of nonstationary problems for nonhomogeneous incompressible fluids and convergence with vanishing
viscosity. Tokyo J Math, 1999, 22: 17--42
[20] Landau L D, Lifshitz E M, Pitaevskii L P. Electrodynamics of Continuous Media. 2nd ed. London: Butterworth-Heinemann, 1999
[21] Lions P L. Mathematical Topics in Fluid Dynamics Vol 1 Incompressible Models. Oxford: Oxford Science Publication, 1996
[22] Majda A, Bertozzi A L. Vorticity and Incompressible Flow. Cambridge Texts in Appl Math, Cambridge: Cambridge Univ Press, 2002
[23] Schmidt P. On a magnetohydrodynamic problem of Euler type. J Diff Eqns, 1988, 74: 318--335
[24] Secchi P. On the equations of ideal incompressible magneto-hydrodynamics. Rend Sem Mat Univ Padova, 1993, 90: 103--119
[25] Secchi P. On an initial boundary value problem for the equations of ideal magnetohydrodynamics. Math Meth Appl Sci, 1995,
18: 841--853
[26] Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36: 635--664
[27] Swann H S G. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in R3. Trans Amer Math Soc, 1971, 157: 373--397
[28] Temam R. Navier-Stokes Equations. Amsterdam: North-Holland, 1983
[29] Woods L C. Priciples of Magnetoplasma Dynamics. Oxford: Oxford University Press, 1987
[30] Wu J. Viscous and inviscid magneto-hydrodynamics equations. J Anal Math, 1997, 73: 251--265
[31] Wu J. Generalized MHD equations. J Diff Eqns, 2003, 195: 284--312
[32] Yanagisawa T, Matsumura A. The fixed boundary value problems for the equations of ideal magneto-hydrodynamics with a
perfectly conducting wall condition. Comm Math Phys, 1991, 136: 119--140
[33] He C, Xin Z P. On the self-similar solutions of the magneto-hydro-dynamic equations. Acta Math Sci, 2009, 29B(3): 583--598 |