[1] Jiang S, Xin Z P, Zhang P. Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl Anal, 2005, 12(3):239-252 [2] Kazhikhov A V, Shelukhin V V. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J Appl Math Mech, 41(2):273-282; translated from Prikl Mat Meh, 1977, 41(2):282-291 [3] Lions P L. Mathematical Topics in Fluid Dynamics Vol 2:Compressible Models. Oxford:Oxford Science Publications, 1998 [4] Liu T P, Xin Z P. Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm Math Phys, 1988, 118(3):451-465 [5] Matsumura A, Nishihara K. Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1986, 3(1):1-13 [6] Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Comm Math Phys, 1992, 144(2):325-335 [7] Liu T P, Xin Z P, Yang T. Vacuum states for compressible flow. Discrete Contin Dyn Syst, 1998, 4(1):1-32 [8] Li H L, Li J, Xin Z P. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Comm Math Phys, 2008, 281:401-444 [9] Mellet A, Vasseur A. Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2008, 39(4):1344-1365 [10] Guo Z H, Jiu Q S, Xin Z P. Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J Math Anal, 2008, 39(5):1402-1427 [11] Yang T, Yao Z A, Zhu C J. Compressible Navier-Stokes equations with density-dependent viscosity and vacuum. Comm Partial Differential Equations, 2001, 26(5/6):965-981 [12] Yang T, Zhu C J. Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Comm Math Phys, 2002, 230(2):329-363 [13] Jiu Q S, Xin Z P. The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinet Relat Models, 2008, 1(2):313-330 [14] Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data. Indiana Univ Math J, 1989, 38(4):861-915 [15] Goodman J, Xin Z P. Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch Rat Mech Anal, 1992, 121(3):235-265 [16] Xin Z P. Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases. Comm Pure Appl Math, 1993, 46(5):621-665 [17] Wang H Y. Viscous limits for piecewise smooth solutions of the p-system. J Math Anal Appl, 2004, 299(2):411-432 [18] Chen G Q, Perepelitsa M. Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Comm Pure Appl Math, 2010, 63(11):1469-1504 [19] Jiang S, Ni G X, Sun W J. Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids. SIAM J Math Anal, 2006, 38(2):368-384 [20] Xin Z P, Zeng H H. Convergence to rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations. J Differential Equations, 2010, 249(4):827-871 [21] Wang Y. Zero dissipation limit of the compressible heat-conducting navier-stokes equations in the presence of the shock. Acta Math Sci, 2008, 28B(4):727-748 [22] Ma S X. Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations. J Differential Equations, 2010, 248(1):95-110 [23] Huang F M, Wang Y, Yang T. Fluid dynamic limit to the Riemann solutions of Euler equations:I. Superposition of rarefaction waves and contact discontinuity. Kinet Relat Models, 2010, 3(4):685-728 [24] Huang F M, Jiang S, Wang Y. Zero dissipation limit of full compressible Navier-Stokes equations with a Riemann initial data. Commun Inf Syst, 2013, 13(2):211-246 [25] Huang F M, Wang Y, Yang T. Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem. Arch Ration Mech Anal, 2012, 203(2):379-413 [26] Zhang Y, Pan R, Wang Y, Tan Z. Zero dissipation limit with two interacting shocks of the 1D non-isentropic Navier-Stokes equations. Indiana Univ Math J, 2013, 62(1):249-309 [27] Hong H. Zero dissipation limit to contact discontinuity for the compressible Navier-Stokes system of general gas. Acta Math Sci, 2016, 36B(1):157-172 [28] Hong H, Wang T. Zero dissipation limit to a Riemann solution for the compressible Navier-Stokes system of general gas. Acta Math Sci, 2017, 37B(5):1177-1208 [29] Shi X, Yong Y, Zhang Y. Vanishing viscosity for non-isentropic gas dynamics with interacting shocks. Acta Math Sci, 2016, 36B(6):1699-1720 [30] Huang F M, Wang Y, Wang Y, Yang T. The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J Math Anal, 2013, 45(3):1741-1811 [31] Hoff D. Construction of solutions for compressible, isentropic Navier-Stokes equations in one space dimension with nonsmooth initial data. Proc Royal Soc Edinburgh A, 1986, 103(3/4):301-315 [32] Hoff D, Smoller J. Solutions in the large for certain nonlinear parabolic systems. Ann Inst H Poincaré Anal. Non Linéaire, 1985, 2(3):213-235 [33] Jiang S. Global smooth solutions of the equations of a viscous, heat-conducting one-dimensional gas with density-dependent viscosity. Math Nachr, 1998, 190:169-183 [34] Feireisl E, Novotný A, Petzeltová H. On the existence of globally defined weak solutions to the Navier-Stokes equations. J Math Fluid Mech, 2001, 3(4):358-392 |