数学物理学报(英文版) ›› 2021, Vol. 41 ›› Issue (5): 1659-1669.doi: 10.1007/s10473-021-0515-4
汤凯
Kai TANG
摘要: In this paper, we derive some $\partial\overline{\partial}$-Bochner formulas for holomorphic maps between Hermitian manifolds. As applications, we prove some Schwarz lemma type estimates, and some rigidity and degeneracy theorems. For instance, we show that there is no non-constant holomorphic map from a compact Hermitian manifold with positive (resp. non-negative) $\ell$-second Ricci curvature to a Hermitian manifold with non-positive (resp. negative) real bisectional curvature. These theorems generalize the results[5, 6] proved recently by L. Ni on Kähler manifolds to Hermitian manifolds. We also derive an integral inequality for a holomorphic map between Hermitian manifolds.
中图分类号: