[1] Bianchini S, Bressan A. Vanishing viscosity solutons of nonlinear hyperbolic systems. Ann Math, 2005, 161:223-342 [2] Bressan A, Huang F M, Wang Y, et al. On the convergence rate of vanishing viscosity approximations for nonlinear hyperbolic systems. SIAM J Math Anal, 2012, 44:3537-3563 [3] Bressan A, Yang T. On the convergence rate of vanishing viscosity approximations. Comm Pure Appl Math, 2004, 57:1075-1109 [4] Chen G Q, Perepelista M. Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Commun Pure Appl Math, 2010, 63:1469-1504 [5] Courant R, Friedrichs O. Supersonic Flows and Shock Waves. New York:Willey-Interscience, 1948 [6] Duan R J, Liu H G, Zhao H J. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation. Trans Amer Math Soc, 2009, 361:453-493 [7] Goodman J, Xin Z P. Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch Ration Mech Anal, 1992, 121:235-265 [8] Hoff D. Discontinuous solutions of the Navier-Stokes equations for compressible flow. Arch Ration Mech Anal, 1991, 114:15-46 [9] Hong H H. Zero dissipation limit to contact discontinuity for the compressible Navier-Stokes system of general gas. Acta Math Sci, 2016, 36B:157-172 [10] Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ Math J, 1989, 36:861-915 [11] Huang F M, Jiang S, Wang Y. Zero dissipation limit of full compressible Navier-Stokes equations with Riemann initial data. Commun Inform Sys, 2013, 13:211-246 [12] Huang F M, Li J, Matsumura A. Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimentional compressible Navier-Stokes system. Arch Ration Mech Anal, 2010, 197:89-116 [13] Huang F M, Li M G, Wang Y. Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2012, 44:1742-1759 [14] Huang F M, Li X Zero dissipation limit to rarefaction waves for the 1-D compressible Navier-Stokes equations. Chin Ann Math Ser B, 2012, 33:385-394 [15] Huang F M, Wang Y, Wang Y, Yang T. The limit of the Boltzmann equation to the Euler equations for Riemann problems. SIAM J Math Anal, 2013, 45:1741-1811 [16] Huang F M, Wang Y, Wang Y, Yang T. Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks. Sci China Math, 2015, 58:653-672 [17] Huang F M, Wang Y, Yang T. Fluid dynamic limit to the Riemann solutions of Euler equations:I. superposition of rarefaction waves and contact discontinuity. Kinet Relat Mod, 2010, 3:685-728 [18] Huang F M, Wang Y, Yang T. Vanishing viscosity limit of compressible Navier-Stokes equations for solutions to a Riemann problem. Arch Ration Mech Anal, 2012, 203:379-413 [19] Huang F M, Wang Y, Zhai X Y. Stability of viscous contact wave for compressible Navier-Stokes system of general gas with free boundary. Acta Math Sci, 2010, 30B:1906-1916 [20] Jiang S, Ni G X, Sun W J. Vanishing viscosity linit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids. SIAM J Math Anal, 2006, 38:368-384 [21] Li M G and Wang T. Zero dissipation limit to rarefaction wave with vacuum for one-dimensional full compressible Navier-Stokes equations. Commun Math Sci, 2014, 12:1135-1154 [22] Li M G, Wang T, Wang Y. The limit to rarefaction wave with vacuum for 1D compressible fluids with temperature-dependent transport coefficients. Anal Appl, 2015, 13:555-589 [23] Ma S X. Zero dissipation limit to strong contact discontinuity for the 1-D compressible Navier-Stokes equations. J Differential Equations, 2010, 248:95-110 [24] Qin X H, Wang T, Wang Y. Global stability of wave patterns for compressible Navier-Stokes system with free boundary. Acta Math Sci, 2016, 36B:1192-1214 [25] Shi X H, Yong Y, Zhang Y L. Vanishing viscosity for non-isentropic gas dynamics with interacting shocks. Acta Math Sci, 2016, 36B:1699-1720 [26] Wang T. Vanishing viscosity limit to rarefaction wave with vacuum for 1-D compressible Navier-Stokes equations with density-dependent viscosity. Commun Math Sci, 2015, 13:477-495 [27] Wang H Y. Viscous limits for piecewise smooth solutions for the p-system. J Math Anal Appl, 2004, 299:411-432 [28] Wang Y. Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock. Acta Math Sci, 2008, 28B:727-748 [29] Xin Z P. Zero dissipation limit to rarefaction waves for the one-dimensinal Navier-Stokes equations of compressible isentropic gases. Comm Pure Appl Math, 1993, 46:621-665 [30] Xin Z P, Zeng H H. Convergence to rarefaction waves for nonlinear Boltzmann equation and compressible Navier-Stokes equations. J Differential Equations, 2010, 249:827-871 [31] Yu H Y. Zero dissipation limit of solutions with shocks for systems of hyperboloc conservation laws. Arch Ration Mech Anal, 1999, 146:275-370 [32] Zhang Y H, Pan R H, Tan T. Zero dissipation limit to a Riemann solution of two shock waves for the 1D compressible isentropic Navier-Stokes equations. Sci China Math, 2013, 56:2205-2232 [33] Zhang Y H, Pan R H, Wang Y, Tan Z. Zero dissipation limit with two interacting shocks of the 1D non-isentropic Navier-Stokes equations. Indiana Univ Math J, 2014, 62:249-309 |