数学物理学报(英文版) ›› 2021, Vol. 41 ›› Issue (3): 657-669.doi: 10.1007/s10473-021-0301-3
• 论文 • 下一篇
陈泳1, Kei Ji IZUCHI2, Kou Hei IZUCHI3, Young Joo LEE4
Yong CHEN1, Kei Ji IZUCHI2, Kou Hei IZUCHI3, Young Joo LEE4
摘要: We consider Toeplitz operators $T_u$ with symbol $u$ on the Bergman space of the unit ball, and then study the convergences and summability for the sequences of powers of Toeplitz operators. We first charactreize analytic symbols $\varphi$ for which the sequence $T^{*k}_\varphi f$ or $T^{k}_\varphi f$ converges to 0 or $\infty$ as $k\to\infty$ in norm for every nonzero Bergman function $f$. Also, we characterize analytic symbols $\varphi$ for which the norm of such a sequence is summable or not summable. We also study the corresponding problems on an infinite direct sum of Bergman spaces as a generalization of our result.
中图分类号: