[1] Ahlfors L. M¨obius transformations in several dimensions. Ordway Professorship Lectures in Mathematics.
Minneapolis, Minn: University of Minnesota, School of Mathematics, 1981
[2] Amar E. Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de Cn. Canad J Math, 1978, 30: 711–737
[3] Axler S, Bourdon P, Ramey W. Harmonic Function Theory. Graduate Texts in Math 137. New York: Springer-Verlag, 1992
[4] Berndtsson B, Ortega Cerd`a J. On interpolation and sampling in Hilbert spaces of analytic functions. J Reine Angew Math, 1995, 464: 109–128
[5] Blasi D, Nicolau A. Interpolation by positive harmonic functions. Journal of the London Mathematical Society, 2007, 76(1): 253–271
[6] Carleson L. An interpolation problem for bounded analytic functions. Amer J Math, 1958, 80: 921–930
[7] Carleson L. A moment problem and harmonic interpolation. Preprint. Institut Mittag-Leffler, 1972
[8] Carleson L, Garnett J. Interpolating sequences and separation properties. J Anal Math, 1975, 28: 273–299
[9] Chen Z, Ouyang W. A Littlewood-Paley type theorem for Bergman spaces, Acta Mathematica Scientia, 2013, 33B(1): 150–154
[10] Choe B L, Lee Y J, Na K. Toeplitz operators on harmonic Bergman spaces. Nagoya Math J, 2004, 174: 165–186
[11] Duren P, Schuster A, Vukoti´c D. On uniformly discrete sequences in the disk//Ebenfelt, Peter et al. Quadrature domains and their applications. The Harold S. Shapiro anniversary volume. Expanded version of talks and papers presented at a conference on the occasion of the 75th birthday of Harold S. Shapiro, Santa Barbara, CA, USA, March 2003. Basel: Birkh¨auser. Operator Theory: Advances and Applications, 2005, 156: 131–150
[12] Duren P, Weir R. The Pseudohyperbolic metric and Bergman spaces in the ball. Trans Amer Math Soc, 2007, 359(1): 63–76
[13] Hua L K. Starting with the unit circle. New York, Heidelberg, Berlin: Springer, 1981
14] Luecking D H. Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives.
Amer J Math, 1985, 107: 85–111
[15] Massaneda X. A−p interpolation in the unit ball. J London Math Soc, 1995, 52: 391–401
[16] Miao J. Reproducing kernels for harmonic Bergman spaces of the unit ball. Mh Math, 1998, 125: 25–35
[17] Pavloviˇc M. Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball. Indag Math (NS), 1991, 2(1): 89–98
[18] Peng R, Ouyang C. Carleson Measures for Besov-Sobolev Spaces with Applications in the Unit Ball of Cn. Acta Mathematica Scientia, 2013, 33B(5): 1219–1230
[19] Ren G, K¨ahler U. Radial Derivative on Bounded Symmetric Domains. Studia Mathematica, 2003, 157(1): 57–70
[20] Ren G, K¨ahler U. Boundary behavior of Gleason’s problem in hyperbolic harmonic Bergman space. Science
in China A, 2005, 48(2): 145–154
[21] Ren G, Shi J. Bergman type operator on mixed norm spaces with applications. Chin Ann of Math, 1997, 18B: 265–278
[22] Ren G, K¨ahler U, Shi J, Liu C. Hardy-Littlewood inequalities on the space of invariant harmonic functions. Complex Analysis and Operator Theory, 2012, 6(2): 373–396
[23] Rochberg R. Interpolation by functions in Bergman spaces. Michigan Math J, 1982, 29: 229–236
[24] Rudin W. Function Theory in the Unit Ball of Cn. New York: Springer-Verlag, 1980
[25] Schuster A. On Seip’s Description of Sampling Sequences for Bergman spaces. Complex Variables, 2000, 42(4): 347–367
[26] Seip K. Interpolating and sampling in spaces of analytic functions. University Lecture Series 33. Providence, RI: AMS, 2004
[27] Seip K. Density theorems for sampling and interpolation in the Bargmann-Fock space I. J Reine Angew Math, 1992, 429: 91–106
[28] Seip K. Density theorems for sampling and interpolation in the Bargmann-Fock space II. J Reine Angew Math, 1992, 429: 107–113
[29] Stoll M. Invariant potential theory in the unit ball of Cn. London Mathematical Society Lecture Note Series, 199. Cambridge: Cambridge University Press, 1994
[30] Xiao J. Carleson measure, atomic decomposition and free interpolation from Bloch space. Annal Acad Scient Fenn Series A, 1994, 19: 35–46
[31] Zhang Y, Deng G, Kou K I. On the lower bound for a class of harmonic functions in the half space. Acta Mathematica Scientia, 2012, 32B(4): 1487–1494 |