[1] Nowak M A, Bangham C R M. Population dynamics of immune responses to persistent viruses. Science, 1996, 272(5258):74-79 [2] Perelson A S, Neumann A U, Markowitz M, et al. HIV-1 dynamics in vivo:virion clearance rate, infected cell life-span, and viral generation time. Science, 1996, 271(5255):1582-1586 [3] Hattaf K, Khabouze M, Yousfi N. Dynamics of a generalized viral infection model with adaptive immune response. Int J Dynam Control, 2015, 3:253-261 [4] Yousfi N, Hattaf K, Tridane A. Modeling the adaptive immune response in HBV infection. J Math Biol, 2011, 63(5):933-957 [5] Allali K, Meskaf A, Tridane A. Mathematical Modeling of the Adaptive Immune Responses in the Early Stage of the HBV Infection. Int J Differ Equ, 2018, 2018. ID:6710575 [6] Xu R. Global stability of an HIV-1 infection model with saturation infection and intracellular delay. J Math Anal Appl, 2011, 375(1):75-81 [7] Yuan Z H, Ma Z J, Tang X H. Global stability of a delayed HIV infection model with nonlinear incidence rate. Nonlinear Dynam, 2012, 68(1/2):207-214 [8] Song X Y, Zhou X Y, Zhao X. Properties of stability and Hopf bifurcation for a HIV infection model with time delay. Appl Math Model, 2010, 34(6):1511-1523 [9] Wang X, Elaiw A, Song X Y. Global properties of a delayed HIV infection model with CTL immune response. Appl Math Comput, 2012, 218(18):9405-9414 [10] Wang Z P, Xu R. Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response. Commun Nonlinear Sci Numer Simul, 2012, 17(2):964-978 [11] Bai Z G, Zhou Y C. Dynamics of a viral infection model with delayed CTL response and immune circadian rhythm. Chaos Soliton Fract, 2012, 45(9/10):1133-1139 [12] Xie Q Z, Huang D W, Zhang S D, et al. Analysis of a viral infection model with delayed immune response. Appl Math Model, 2010, 34(9):2388-2395 [13] Wang S L, Feng X L, He Y N. Globl asymptotical properties for a diffused HBV infection model with CTL immune response and nonlinear incidence. Acta Mathematica Scientia, 2011, 31B(5):1959-1967 [14] Scheid J F, Mouquet H, Feldhahn N, et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature, 2009, 458(7238):636-640 [15] Moore P L, Gray E S, Wibmer C K, et al. Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape. Nat Med, 2012, 18(11):1688-1692 [16] Wodarz D. Hepatitis C virus dynamics and pathology:The role of CTL and antibody responses. J Gen Virol, 2003, 84(7):1743-1750 [17] Wang Y, Zhou Y C, Brauer F, et al. Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J Math Biol, 2013, 67(4):901-934 [18] Yan Y C, Wang W D. Global stability of a five-dimensional model with immune responses and delay. Discrete Contin Dyn Syst Ser B, 2012, 17(1):401-416 [19] Balasubramaniam P, Tamilalagan P, Prakash M. Bifurcation analysis of HIV infection model with antibody and cytotoxic T-lymphocyte immune responses and Beddington-DeAngelis functional response. Math Methods Appl Sci, 2015, 38(7):1330-1341 [20] Wang Z P, Xu R. Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response. Commun Nonlinear Sci Numer Simul, 2012, 17(2):964-978 [21] Yuan Z H, Ma Z J, Tang X H. Global stability of a delayed HIV infection model with nonlinear incidence rate. Nonlinear Dyn, 2012, 68(1/2):207-214 [22] Huang G, Yokoi H, Takeuchi Y, et al. Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics. Japan J Indust Appl Math, 2011, 28(3):383-411 [23] Elaiw A M, Azoz S A. Global properties of a class of HIV infection models with Beddington-DeAngelis functional response. Math Methods Appl Sci, 2013, 36(4):383-394 [24] Huang G, Ma W B, Takeuchi Y. Global properties for virus dynamics model with Beddington-DeAngelis functional response. Appl Math Lett, 2009, 22(11):1690-1693 [25] Huang G, Ma W B, Takeuchi Y. Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response. Appl Math Lett, 2011, 24(7):1199-1203 [26] Lv C F, Huang L H, Yuan Z H. Global stability for an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response. Commun Nonlinear Sci Numer Simul, 2014, 19(1):121-127 [27] Wang X, Tao Y D, Song X Y. Global stability of a virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response. Nonlinear Dyn, 2011, 66(4):825-830 [28] Wang X, Tao Y D, Song X Y. A delayed HIV-1 infection model with Beddington-DeAngelis functional response. Nonlinear Dyn, 2010, 62(1/2):67-72 [29] Miao H, Teng Z D, Abdurahman X. Stability and Hopf bifurcation for a five dimensional virus infection model with Beddington-DeAngelis incidence and three delays. J Biol Dynam, 2018, 12(1):146-170 [30] Guo T, Liu H H, Xu C L, et al. Dynamics of a Delayed HIV-1 Infection Model with Saturation Incidence Rate and CTL Immune Response. Int J Bifurcat Chaos, 2016, 26(14), ID:1650234 [31] Hale J K, Lunel S V, Verduyn L S. Introduction to Functional Differential Equations. New York:Springer, 1993 [32] Yang X, Chen L S, Chen J F. Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models. Comput Math Appl, 1996, 32(4):109-116 [33] Zhang T L, Jiang H J, Teng Z D. On the distribution of the roots of a fifth degree exponential polynomial with application to a delayed neural network model. Neurocomputing, 2009, 72(4/6):1098-1104 |