[1] Aleksandrov A D. Uniqueness theorems for surfaces in the large, V. Amer Math Soc Transl, 1962, 21(2):412-416 [2] Berestycki H, Nirenberg L. Monotonicity, Symmetry and antisymmetry of solutions of semilinear elliptic equations. J Geometry Phys, 1988, 5(2):237-275 [3] Berestycki H, Nirenberg L. On the method of moving planess and the sliding method. Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 1991, 22(1):1-37 [4] Brändle C, Colorado E, de Pablo A, Sánchez U. A concaveconvex elliptic problem involving the fractional Laplacian. Proc Royal Soc Edinburgh:Sect A Math, 2013, 143(1):39-71 [5] Busca J, Sirakov B. Symmetry results for semilinear elliptic systems in the whole space. J Differential Equations, 2000, 163:41-56 [6] Cabré X, Sire Y. Nonlinear equations for fractional Laplacians, I:Regularity, maximum principles, and Hamiltonian estimates. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2014, 31(1):23-53 [7] Cabré X, Tan J. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv Math, 2010, 224(5):2052-2093 [8] Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32(8):1245-1260 [9] Capella A, Dávila J, Dupaigne L, Sire Y. Regularity of radial extremal solutions for some non-local semilinear equations. Comm Partial Differential Equations, 2011, 36(8):1353-1384 [10] Chen W, Fang Y, Yang R. Liouville theorems involving the fractional Laplacian on a half space. Adv Math, 2015, 274:167-198 [11] Chen W, Li C, Li Y. A direct method of moving planes for the fractional laplacian. Adv Math, 2017, 308:404-437 [12] Chen W, Li C. Classifcation of positive solutions for nonlinear differential and integral systems with critical exponents. Acta Math Sci, 2009, 29:949-960 [13] Chen W, Li C, Ou B. Classifcation of solutions for an integral equation. Comm Pure Appl Math, 2006, 59(3):330-343 [14] Chen W, Zhu J. Indefinite fractional elliptic problem and Liouville theorems. J Differential Equations, 2016, 269(5):4758-4785 [15] Cheng T. Monotonicity and symmetry of solutions of fractional Laplacian equations. (In preparation) [16] Cheng T, Huang G, Li C. The maximum principles for fractional Laplacian equations and their applications. Comm Contem Math, 2017:1750018 [17] Dipierro S, Palatucci G, Valdinoci E. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Le Matematiche, 2013, 68(1):201-216 [18] Felmer P, Wang Y. Radial symmetry of positive solutions to equations involving the fractional Laplacian. Comm Contemp Math, 2014, 16(1):1350023 [19] de Figueiredo D G. Monotonicity and symmetry of solutions of elliptic systems in general domains. Nonlinear Differential Equations Appl, 1994, 1:119-123 [20] de Figueiredo D G, Felmer P L. A Liouville-type theorem for elliptic systems. Ann Sc Norm Super Pisa Cl Sci, 1994, 21(4):387-397 [21] Gidas B, Ni W, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979, 68(3):209-243 [22] Gidas B, Ni W, Nirenberg L. Symmetry of positive solutions of nonlinear elliptic equations in Rn. Adv Math Suppl Stud A, 1981, 7:369-402 [23] Jarohs S, Weth T. Symmetry via antisymmetric maximum principles in nonlocal problems of variable order. Annali di Matematica Pura ed Applicata, (1923-) 2014:1-19 [24] Li C. Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains. Comm Partial Differ Equ, 1991, 16(2/3):491-526 [25] Li C. Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains. Comm Partial Differ Equ, 1991, 16(4/5):585-615 [26] Wu Z G, Xu H. Symmetry properties in systems of fractional Laplacian equations. To appear in Disc Contin Dyn Sys-A [27] Li C, Wu Z G, Xu H. Maximxm principles and Bôcher type theorems. Proc Natl Acad Sci, USA, 2018, DOI:10.1073/pnas.1804225115 [28] Liu B, Ma L. Radial symmetry results for fractional Laplacian systems. Nonlinear Analysis:Theory, Methods Applications, 2016, 146:120-135 [29] Lü Y, Zhou C. Symmetry for an integral system with general nonlinearity. To appear in Disc Contin Dyn Sys-A [30] Ma L, Liu B. Symmetry results for decay solutions of elliptic systems in the whole space. Adv Math, 2010, 225(6):3052-3063 [31] Ros-Oton X, Serra J. The Dirichlet problem for the fractional Laplacian:regularity up to the boundary. J Math Pures Appl, 2014, 101(3):275-302 [32] Serrin J. A symmetry problem in potential theory. Arch Rational Mech Anal, 1971, 43(4):304-318 [33] Servadei R, Valdinoci E. Mountain Pass solutions for non-local elliptic operators. J Math Anal Appl, 2012, 389(2):887-898 [34] Silvestre L. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math, 2007, 60(1):67-112 [35] Sirakov B. On symmetry in elliptic systems. Appl Anal, 1991, 41:1-9 [36] Troy W C. Symmetry properties in systems of semilinear elliptic equations. J Differential Equations, 1981, 42(3):400-413 [37] Yu X. Liouville type theorem in the Heisenberg group with general nonlinearity. J Differential Equations, 2013, 254(5):2173-2182 [38] Yu X. Liouville type theorem for nonlinear elliptic equation with general nonlinearity. Discrete Continuous Dynamical Systems-A, 2014, 34(11):4947-4966 [39] Zhang L, Li C, Chen W, Cheng T. A Liouville theorem for α-harmonic functions in R+n. Disc Cont Dyn Sys, 2016, 36(3):1721-1736 [40] Zhuo R, Chen W, Cui X, Yuan Z. A Liouville theorem for the fractional Laplacian. Disc Cont Dyn Sys, 2016, 36(2):1125-1141 |