[1] Amendola M E, Galise G, Vitolo A. Riesz capacity, maximum principle, and removable sets of fully nonlinear second-order elliptic operators. Differential Integral Equations, 2013, 26:845-866 [2] Bardi M, Da Lio F. On the strong maximum principle for fully nonlinear degenerate elliptic equations. Arch Math (Basel), 1999, 73:276-285 [3] Berestycki H, Capuzzo Dolcetta I, Porretta A, Rossi L. Maximum principle and generalized principal eigenvalue for degenerate elliptic operators. J Math Pures Appl, 2015, 103(5):1276-1293 [4] Birindelli I, Demengel F. Comparison principle and Liouville type results for singular fully nonlinear operators. Ann Fac Sci Toulouse Math, 2004, 13(6):261-287 [5] Birindelli I, Demengel F. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Commun Pure Appl Anal, 2007, 6:335-366 [6] Caffarelli L, Cabré X. Fully Nonlinear Elliptic Equations. Vol 43 of American Mathematical Society Colloquium Publications. Providence, RI:Amer Math Soc, 1995 [7] Caffarelli L, Li Y Y, Nirenberg L. Some remarks on singular solutions of nonlinear elliptic equations Ⅲ:viscosity solutions including parabolic operators. Comm Pure Appl Math, 2013, 66:109-143 [8] Crandall M G, Ishii H, Lions P-L. User's guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc (NS), 1992, 27:1-67 [9] Dolcetta I C, Vitolo A. On the maximum principle for viscosity solutions of fully nonlinear elliptic equations in general domains. Matematiche (Catania), 2007, 62:69-91 [10] Dolcetta I C, Vitolo A. The weak maximum principle for degenerate elliptic operators in unbounded domains. preprint [11] Harvey F R, Lawson Jr H B. Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry//Surveys in Differential Geometry. Geometry and Topology. Vol 18 of Surv Differ Geom. Somerville, MA:International Press, 2013:103-156 [12] Harvey F R, Lawson Jr H B. Characterizing the strong maximum principle for constant coefficient subequations. Rend Mat Appl, 2016, 37(1/2):63-104 [13] Ishii H. On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDEs. Comm Pure Appl Math, 1989, 42:15-45 [14] Ishii H, Lions P-L. Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J Differential Equations, 1990, 83:26-78 [15] Jensen R. The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch Rational Mech Anal, 1988, 101:1-27 [16] Kawohl B, Kutev N. Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations. Arch Math (Basel), 1998, 70:470-478 [17] Kawohl B, Kutev N. Comparison principle and Lipschitz regularity for viscosity solutions of some classes of nonlinear partial differential equations. Funkcial Ekvac, 2000, 43:241-253 [18] Kawohl B, Kutev N. Comparison principle for viscosity solutions of fully nonlinear, degenerate elliptic equations. Comm Partial Differential Equations, 2007, 32:1209-1224 [19] Koike S, Kosugi T. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Commun Pure Appl Anal, 2015, 14:133-142 [20] Koike S, Ley O. Comparison principle for unbounded viscosity solutions of degenerate elliptic PDEs with gradient superlinear terms. J Math Anal Appl, 2011, 381:110-120 [21] Li A, Li Y Y. On some conformally invariant fully nonlinear equations. Comm Pure Appl Math, 2003, 56:1416-1464 [22] Li Y Y. Degenerate conformally invariant fully nonlinear elliptic equations. Arch Rational Mech Anal, 2007, 186:25-51 [23] Li Y Y. Local gradient estimates of solutions to some conformally invariant fully nonlinear equations. Comm Pure Appl Math, 2009, 62:1293-1326; C R Math Acad Sci Paris, 2006, 343(4):249-252 [24] Li Y Y, Nguyen L, Wang B. Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations. http://arxiv.org/abs/1612.09418v1. To appear in Calc Var Partial Differential Equations [25] Li Y Y, Nirenberg L. A miscellany//Percorsi incrociati (in ricordo di Vittorio Cafagna). Collana Scientifica di Ateneo, Universita di Salerno, 2010:193-208. http://arxiv.org/abs/0910.0323 [26] Trudinger N S. Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations. Rev Mat Iberoamericana, 1988, 4:453-468 [27] Viaclovsky J. Conformal geometry, contact geometry, and the calculus of variations. Duke Math J, 2000, 101:283-316 |