[1] Alexandre R, Morimoto Y, Ukai S, Xu C-J, Yang T. Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff. Kyoto J Math, 2012, 52(3):433-463 [2] Alexandre R, Morimoto X, Ukai S, Xu C-J, Yang T. Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch Ration Mech Anal, 2010, 198(1):39-123 [3] Aoki K, Bardos C, Dogbe C, Golse F. A note on the propagation of boundary induced discontinuities in kinetic theory. Math Models Methods Appl Sci, 2001, 11(9):1581-1595 [4] Bardos C, Gamba I M, Franois G, Levermore C D. Global solutions of the Boltzmann equation over RD near global Maxwellians with small mass. Comm Math Phys, 2016, 346(2):435-467 [5] Bellomo N, Palczewski A, Toscani G. Mathematical Topics in Nonlinear Kinetic Theory. Singapore:World Scientific Publishing Co, 1988 [6] Bellomo N, Toscani G. On the Cauchy problem for the nonlinear Boltzmann equation global existence uniqueness and asymptotic stability. J Math Phys, 1984, 26:334-338 [7] Bernis, L, Desvillettes L. Propagation of singularities for classical solutions of the Vlasov-PoissonBoltzmann equation. Discrete Contin Dyn Syst, 2009, 24:13-33 [8] Boudin L, Desvillettes L. On the singularities of the global small solution soft the full Boltzmann equation. Monatsch Math, 2000, 131:91-108 [9] Cannone M, Karch G. Infinite energy solutions to the homogeneous Boltzmann equation. Comm Pure Appl Math, 2010, 63:747-778 [10] Carlen E A, Gabetta E, Toscani G. Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Comm Math Phys, 1999, 199:521-546 [11] Cercignani C, Illner R, Pulvirenti M. The Mathematical Theory of Dilute Gases. New York:Springer-Verlag, 1994 [12] Desvillettes L, Wennberg B. Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff. Comm Partial Diff Eqns, 2004, 29:133-155 [13] DiPerna R J. Lions P-L. On the Cauchy problem for Boltzmann equation:Global existence and weak stability. Ann Math, 1989, 130:321-366 [14] Duan R J. On the Cauchy problem for the Boltzmann equation in the whole space:Global existence and uniform stability in Lξ2(HxN). J Differential Equations, 2008, 244:3204-3234 [15] Duan R J, Huang F M, Wang Y, Yang T. Global well posedness for the Boltzmann equation with large amplitude initial data. Arch Rational Mech Anal, 2017, 225:375-424 [16] Duan R J, Li M R, Yang T. Propagation of singularities in the solutions to the Boltzmann equation near equilibrium. Math Models Methods Appl Sci, 2008, 18:1093-1114 [17] Glassey R T. The Cauchy Problem in Kinetic Theory. Philadelphia:Society for Industrial and Applied Mathematics (SIAM), 1996 [18] Golse F, Lions P L, Perthame B, Sentis R. Regularity of the moments of the solution of a transport equation. J Funct Anal, 1988, 76(1):110125 [19] Guo Y. The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53:1081-1094 [20] Guo Y. Bounded solutions for the Boltzmann equation. Quart Appl Math, 2010, 68(1):143-148 [21] Hamdache K. Existence in the large and asymptotic behaviour for the Boltzmann equation. Jpn J Appl Math, 1985, 2:1-15 [22] Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ Math J, 1989, 38(4):861-915 [23] Illner R, Shinbrot M. Global existence for a rare gas in an infinite vacuum. Comm Math Phys, 1984, 95:117-126 [24] Imai K, Nishida T. Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ RIMS Kyoto Univ, 1976, 12:229-239 [25] Kaniel S, Shinbrot M. The Boltzmann equation I:Uniqueness and global existence. Comm Math Phys, 1978, 58:65-84 [26] Kim C. Formation and propagation of discontinuity for Boltzmann equation in non-convex domain. Comm Math Phys, 2011, 308:641-701 [27] Morimoto Y, Wang S K, Yang T. A new characterization and global regularity of infinite energy solutions to the homogeneous Boltzmann equation. J Math Pures Appl, 2015, 103:809-829 [28] Mouhot C, Villani C. Regularity theory for the spatially homogeneous Boltzmann equation with cut-off. Arch Rational Mech Anal, 2004, 173:169-212 [29] Polewczak J. Classical solutions of the Boltzmann equation in R3:asymptotic behavior of solutions. J Stat Phys, 1988, 50:61-632 [30] Ukai S, Yang T. The Boltzmann equation in the space L2∩Lβ∞:Global and time-periodic solutions. Anal Appl, 2006, 4:263-310 [31] Villani C. A review of mathematical topics in collisional kinetic theory//Handbook of mathematical Fluid Dynamics. Vol I. Amsterdam:North-Holland, 2002:71-305 |