[1] Chapman S, Cowling T. The Mathematical Theory of Non-uniform Gases. 3rd ed. London:Cambrige University Press, 1970
[2] Chen Z Z, Xiao Q H. Nonlinear stability of planar shock profiles for the generalized KdV-Burgers equation in several dimensions. Acta Math Sci, 2013, 33B(6):1531-1550
[3] Duan R, Liu H X, Zhao H J. Nonlinear stability of rarefaction waves for the compressible Navier-Stokes equations with large initial perturbation. Trans Amer Math Soc, 2009, 361(1):453-493
[4] Huang FM, Matsumura A. Stability of a composite wave of two viscous shock waves for the full compressible Navier-Stokes equation. Comm Math Phys, 2009, 289(3):841-861
[5] Jiu Q S, Wang Y, Xin Z P. Vacuum behaviors around rarefaction waves to 1D compressible Navier-Stokes equations with density-dependent viscosity. SIAM J Math Anal, 2013, 45(5):3194-3228
[6] Jiu Q S, Wang Y, Xin Z P. Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with density-dependent viscosity. Comm Partial Differential Equations, 2011, 36(4):602-634
[7] Kanel' J. A model system of equations for the one-dimensional motion of a gas. Differential Equations, 1968, 4:374-380
[8] Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm Math Phys, 1985, 101(1):97-127
[9] Liu T P, Zeng Y N. Shock waves in conservation laws with physical viscosity. Mem Amer Math Soc, 2014, 234(1105):viii+168
[10] Mascia C, Zumbrun K. Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic sys-tems. Comm Pure Appl Math, 2004, 57(7):841-876
[11] Matsumura A, Nishihara K. Global asymptotics toward the rarefaction wave for solutions of viscous p-system with boundary effect. Quart Appl Math, 2000, 58(1):69-83
[12] Matsumura A, Nishihara K. Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas. Comm Math Phys, 1992, 144(2):325-335
[13] Matsumura A, Nishihara K. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J Appl Math, 1985, 2(1):17-25
[14] Matsumura A, Wang Y. Asymptotic stability of viscous shock wave for a one-dimensional isentropic model of viscous gas with density dependent viscosity. Methods Appl Anal, 2010, 17(4):279-290
[15] Nishihara K, Yang T, Zhao H J. Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations. SIAM J Math Anal, 2004, 35(6):1561-1593
[16] Smoller J. Shock Waves and Reaction-Diffusion Equations. Grundlehren der Mathematischen Wis-senschaften 285.[Fundamental Principles of Mathematical Sciences]. 2nd ed. New York:Springer-Verlag, 1994
[17] Wang T, Zhao H J, Zou Q Y. One-dimensional compressible Navier-Stokes equations with large density oscillation. Kinet Relat Models, 2013, 6(3):649-670
[18] Xiao Q H, Zhao H J. Nonlinear stability of generalized Benjamin-Bona-Mahony-Burgers shock profiles in several dimensions. J Math Anal Appl, 2013, 406(1):165-187
[19] Zumbrun K. Stability of large-amplitude shock waves of compressible Navier-Stokes equations. With an appendix by Helge Kristian Jenssen and Gregory Lyng//Handbook of Mathematical Fluid Dynamics, Vol Ⅲ. Amsterdam:North-Holland, 2004:311-533 |