[1] Alexander J, Gardner R, Jones C. A topological invariant arising in the stability analysis of travelling waves.
J Reine Angew Math, 1990, 410: 167--212
[2] Azevedo A, Marchesin D, Plohr B, Zumbrun K. Nonuniqueness of solutions of Riemann problems. Z Angew Math Phys, 1996, 47(6): 977--998
[3] Alexander J C, Sachs R. Linear instability of solitary waves of a Boussinesq-type equation: a computer assisted computation. Nonlinear World, 1995, 2(4): 471--507
[4] Anderson J E. Magnetohydrodynamic Shock Waves. MIT Press, 1963
[5] Barker B, Humpherys J, Rudd K, Zumbrun K. Stability of viscous shocks in isentropic gas dynamics. Comm Math Phys, 2008, 281(1): 231--249
[6] Barker B, Humpherys J, Zumbrun K. One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics. Preprint, 2007
[7] Beck M, Sandstede B, Zumbrun K. Nonlinear stability of time-periodic shock waves. To appear, Arch Rat Mechanics Anal
[8] Beyn W -J. The numerical computation of connecting orbits in dynamical systems. IMA J Numer Analysis, 1990, 9: 379--405
[9] Beyn W -J. Zur stabilit at von differenenverfahren f\"ur systeme linearer gewöhnlicher randwertaufgaben.
Numer Math, 1978, 29: 209--226
[10] Cabannes H. Theoretical Magnetofluiddynamics. New York: Academic Press, 1970
[11] Batchelor G K. An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press, 1999
[12] Blokhin A, Trakhinin Y. Stability of strong discontinuities in fluids and MHD//Handbook of mathematical fluid dynamics, Vol I. Amsterdam: North-Holland, 2002: 245--652
[13] Bridges T J, Derks G, Gottwald G. Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Phys D, 2002, 172(1-4): 190--216
[14] Brin L Q. Numerical testing of the stability of viscous shock waves. PhD thesis, Indiana University, oomington, 1998
[15] Brin L Q. Numerical testing of the stability of viscous shock waves. Math Comp, 2001, 70(235): 1071--1088
[16] Brin L Q, Zumbrun K. Analytically varying eigenvectors and the stability of viscous shock waves. Mat Contemp, 2002, 22: 19--32. Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001)
[17] Conley C C, Smoller J. On the structure of magnetohydrodynamic shock waves. Comm Pure Appl Math, 1974, 27: 367--375
[18] Conley C C, Smoller J. On the structure of magnetohydrodynamic shock waves II. J Math Pures Appl, 1975, 9(4): 429--443
[19] Costanzino N, Humpherys J, Nguyen T, Zumbrun K. Spectral stability of noncharacteristic boundary layers of
isentropic Navier--Stokes equations. Arch Ration Mech Anal, to appear, 2008
[20] Diehl D, Rohde C. On the Structure of MHD Shock Waves in Diffusive-Dispersive Media. Preprint 34, Albert-Ludwigs-Universitt Freiburg, Fakultt fr Mathematik und Physik, Mathematisches Institut, 2002
[21] Evans J W, Feroe J A. Traveling waves of infinitely many pulses in nerve equations. Math Biosci, 1977, 37: 23--50
[22] Freistühler H. Dynamical stability and vanishing viscosity: a case study of a non-strictly hyperbolic system.
Comm Pure Appl Math, 1992, 45(5): 561--582
[23] Freistühler H, Rohde D. The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas.
Phys D, 2003, 185(2): 78--96
[24] Freistühler H. Rohde C. Numerical computation of viscous profiles for hyperbolic conservation laws. Math Comp, 2002, 71(239): 1021--1042
[25] Freistühler H, Szmolyan P. Existence and bifurcation of viscous profiles for all intermediate netohydrodynamic shock waves. SIAM J Math Anal, 1995, 26(1): 112--128
[26] Freistühler H, Trakhinin Y. On the viscous and inviscid stability of magnetohydrodynamic shock waves.
Physica D: Nonlinear Phenomena, 2008, 237(23): 3030--3037
[27] Freistühler H, Zumbrun K. Examples of unstable viscous shock waves. Unpublished research report, University of Aachen, Germany, 1998
[28] Gardner R A, Zumbrun K. The gap lemma and geometric criteria for instability of viscous shock profiles.
Comm Pure Appl Math,1998, 51(7): 797--855
[29] Gardner R, Jones C K R T. A stability index for steady state solutions of boundary value problems for parabolic systems. J Diff Eqs, 1991, 91(2): 181--203
[30] Gardner R, Jones C K R T. Traveling waves of a perturbed diffusion equation arising in a phase field model.
Indiana Univ Math J, 1989, 38(4): 1197--1222
[31] Germain P. Contribution \`a la th\'eorie des ondes de choc en magn\'etodynamique des fluides. ONERA Publ No 97, Office Nat tudes et Recherche Arospatiales, Ch\^atillon, 1959
[32] Gilbarg D. The existence and limit behavior of the one-dimensional shock layer. Amer J Math, 1951, 73: 256--274
[33] Guès O, M\'etivier G, Williams M, Zumbrun K. Navier--Stokes regularization of multidimensional Euler shocks.
Ann Sci École Norm Sup, 2006, 39(4): 75--175
[34] Gues O, M{\'e}tivier G, Williams M, Zumbrun K. Viscous boundary value problems for symmetric systems with variable multiplicities. J Differential Equations, 2008, 244(2): 309--387
[35] Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics. Berlin: Springer--Verlag, 1981
[36] Howard P, Raoofi M. Pointwise asymptotic behavior of perturbed viscous shock profiles. Adv Differential Equations, 2006, 11(9): 1031--1080
[37] Howard P, Raoofi M, Zumbrun K. Sharp pointwise bounds for perturbed viscous shock waves. J Hyperbolic Differ Equ, 2006, 3(2): 297--373
[38] Howard P, Zumbrun K. Staiblity of undercompressive shocks. J Differential Equations, 2006, 225(1): 308--360
[39] Humpherys J, Zumbrun K. Spectral stability of small amplitude shock profiles for dissipative symmetric hyperbolic--parabolic systems. Z Angew Math Phys, 2002, 53: 20--34
[40] Humpherys J, Zumbrun K. An efficient shooting algorithm for evans function calculations in large systems.
Physica D, 2006, 220(2): 116--126
[41] Humpherys J, Lafitte O, Zumbrun K. Stability of viscous shock profiles in the high Mach number limit. Comm Math Phys, to appear, 2009
[42] Humpherys J, Lyng G, Zumbrun K. Spectral stability of ideal-gas shock layers. Arch Ration Mech Anal, to appear, 2009
[43] Humpherys J, Lyng G, Zumbrun K. Multidimensional spectral stability of large-amplitude navier-stokes shocks. In preparation, 2009
[44] Howard P. Nonlinear stability of degenerate shock profiles. Differential Integral Equations, 2007, 20(5): 515--560
[45] Howard P, Zumbrun K. The Evans function and stability criteria for degenerate viscous shock waves.
Discrete Contin Dyn Syst, 2004, 10(4): 837--855
[46] Hale N, Moore D R. A sixth-order extension to the matlab package bvp4c of j. kierzenka and l. shampine.
Technical Report NA-08/04, Oxford University Computing Laboratory, May 2008
[47] Jeffrey A. Magnetohydrodynamics. University Mathematical Texts, No 33. Oliver \& Boyd, Edinburgh, 1966
[48] Kato T. Perturbation Theory for Linear Operators. Classics in Mathematics. Berlin: Springer-Verlag, 1995
[49] Kawashima S. Systems of a hyperbolic--parabolic composite type, with applications to the equations of magnetohydrodynamics
[D]. Kyoto University, 1983
[50] Kierzenka J, Shampine L F. A BVP solver that controls residual and error. J Numer Anal Ind Appl Math, 2008, 3(1/2): 27--41
[51] Mètivier G, Zumbrun K. Hyperbolic boundary value problems for symmetric systems with variable multiplicities. J Differ Equ, 2005, 211(1): 61--134
[52] Majda A. The stability of multidimensional shock fronts. Mem Amer Math Soc, 1983, 275
[53] Majda A. The existence of multidimensional shock fronts. Mem Amer Math Soc, 1983, 281
[54] Majda A, Pego R. Stable viscosity matrices for systems of conservation laws. J Diff Eqs, 1985, 56: 229--262
[55] Mascia C, Zumbrun K. Pointwise {G}reen function bounds for shock profiles of systems with real viscosity.
Arch Ration Mech Anal, 2003, 169(3): 177--263
[56] Mascia C, Zumbrun K. Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems.
Arch Ration Mech Anal, 2004, 172(1): 93--131
[57] Métivier G, Zumbrun K. Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems.
Mem Amer Math Soc, 2005, 175(826)
[58] Oh M, Zumbrun K. Stability of periodic solutions of viscous conservation laws: analysis of the Evans function.
Arch Ration Mech Anal, 2002
[59] Pego R L. Stable viscosities and shock profiles for systems of conservation laws. Trans Amer Math Soc, 1984, 282(2): 749--763
[60] Pego R L, Smereka P, Weinstein M I. Oscillatory instability of traveling waves for a KdV-Burgers equation.
Phys D, 1993, 67(1/3): 45--65
[61] Plaza R, Zumbrun K. An Evans function approach to spectral stability of small-amplitude shock profiles.
J Disc and Cont Dyn Sys, 2004, 10: 885--924
[62] Raoofi M. Lp asymptotic behavior of perturbed viscous shock profiles. J Hyperbolic Differ Equ, 2005, 2(3): 595--644
[63] Raoofi M, Zumbrun K. Stability of undercompressive viscous shock profiles of hyperbolic-parabolic systems.
J Differential Equations, 2009, 246(4): 1539--1567
[64] Shampine L F, Gladwell I, Thompson S. Solving ODEs with MATLAB. Cambridge: Cambridge University Press, 2003
[65] Texier B, Zumbrun K. Hopf bifurcation of viscous shock waves in compressible gas dynamics and MHD.
Arch Ration Mech Anal, 2008, 190(1): 107--140
[66] Trakhinin Y. A complete 2D stability analysis of fast MHD shocks in an ideal gas. Comm Math Phys, 2003, 236(1): 65--92
[67] Zumbrun K. Stability of large-amplitude shock waves of compressible Navier-Stokes equations//Handbook of Mathematical Fluid Dynamics. Vol III. Amsterdam: North-Holland, 2004: 311--533
[68] Zumbrun K. Multidimensional stability of planar viscous shock waves//Advances in the Theory of Shock Waves, Progr Nonlinear Differential Equations Appl, Vol 47. Boston, MA: Birkhäuser Boston, 2001: 307--516
[69] Zumbrun K. A local greedy algorithm and higher order extensions for global numerical continuation of analytically varying subspaces. To appear, Quart Appl Math
[70] Zumbrun K. Numerical error analysis for evans function computations: a numerical gap lemma, centered-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization. Preprint, 2009
[71] Zumbrun K. Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD.
Preprint, 2009
[72] Zumbrun K. The refined inviscid stability condition and cellular instability of viscous shock waves. Preprint, 2009
[73] Zumbrun K. Stability of noncharacteristic boundary layers in the standing shock limit. To appear, Trans Amer Math Soc
[74] Zumbrun K. Stability of viscous detonations in the ZND limit. Preprint, 2009
[75] Zumbrun K, Howard P. Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ Math J, 1998, 47(3): 741--871
[76] Zumbrun K, Serre D. Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ Math J, 1999, 48(3): 937--992
|