[1] Bona J L, Schonbek M E. Traveling wave solution to the Korteweg-deVries-Burgers equation. Proc Roy Soc Edinburgh Sect A, 1985, 30: 207–226
[2] Bona J L, Rajopadhye S V, Schonbek M E. Models for the propagation of bores I. Two dimensional theory. Differential Integral Equations, 1994, 7(3): 699–734
[3] Duan R, Zhao H J. Global stability of strong rarefaction wave for the generalized KdV-Burgers equation. Nonlinear Anal, 2007, 66: 1100–1117
[4] Goodman J. Nonlinear asymptotic stability of viscious shock profiles for conservation laws. Arch Ration Mech Anal, 1986, 95: 325–344
[5] Goodman J. Stability of viscous scalar shock fronts in several dimentions. Trans Amer Math Soc, 1989, 311: 683–695
[6] Goodman J. Long-time behavior of scalar viscous shock fronts in two dimensions. J Dyn Differ Equ, 1999, 11(2): 255–277
[7] Grad H, Hu P N. Unified shock profile in a plasma. Phys Fluids, 1967, 10: 2596–2602
[8] Il’in A M, Oleinik O A. Behavior of the solution of the Cauchy problem for certain quasilinear equations for unbounded increase of time. Amer Math Soc Transl Ser 2, 1964, 42: 19–23
[9] Kazeykina A V. Stability of a traveling-wave solution to the Cauchy problem for the Korteweg-deVries-Burgers equation. Comput Math Math Phy, 2010, 50(4): 725–745
[10] Kawashima S, Matsumura A. Asymptotic stability of traveling wave solutions of systems for one dimen-sional gas motion. Comm Math Phys, 1985, 101: 97–127
[11] Liu T P. Nonlinear stability of shock waves for viscous conservation laws. Mem Amer Math Soc, 1985, 328
[12] Nishihara K, Rajopadhye S V. Asymptotic behaviour of solutions to the Korteweg-deVries-Burgers equa-tion. Differ Integral Equ, 1998, 11(1): 85–93
[13] Naumkin P I, Shishmarev I A. The step-decay problem for the Korteweg-deVries-Burgers equation. Funkts Anal Ego Prilozh, 1991, 25(1): 21–32
[14] Wang Z A, Zhu C J. Stability of rarefaction wave for the generalized KdV-Burgers equation. Acta Math Sci, 2002, 22B(3): 319–328
[15] Xiao Q H, Zhao H J. Nonlinear stability of generalized Benjamin-Bona-Mahony-Burgers shock profiles in several dimensions. J Math Anal Appl, 2013, 406(1): 165–187
[16] Yin H, Zhao H J, Zhou L. Convergence rate of solutions toward traveling waves for the Cauchy problem of generalized Korteweg-deVries-Burgers equations. Nonlinear Anal, 2009, 71: 3981–3991
[17] Ye Q X, Li Z Y. An Introducton to Reaction-Diffusion Equations. Beijing: Science Press, 1990
[18] Volpert Aizik I, Volpert Vitaly A, Volpert Vladimir A. Travelling Wave Solutions of Parabolic Systems. American Mathematical Society, 2000 |