[1] Doedel E J, Paffenroth R C, Champneys A R, Fairgrieve T F, Kuznetsov Y A, Sandstede B, Wang X. Continouation and bifurcation software for ordinary diffeential equations. http://sourceforge.net/projects/auto2000/
[2] Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci, 2002, 180:29-48
[3] Gan C, Yang X, Liu W, Zhu Q. A propagation model of computer virus with nonlinear vaccination proba-bility. Commun Nonlinear Sci, 2014, 19(1):92-100
[4] Grassberger P. Critical behavior of the general epidemic process and dynamical percolation. Math Biosci, 2002, 66(3):35-101
[5] Han X, Tan Q. Dynamical behavior of computer virus on Internet. Appl Math Comput, 2010, 217:2520-2526
[6] Hu Z, Wang H, Liao F, Ma W. Stability analysis of a computer virus model in latent period. Chaos Soliton Fract, 2015, 75:20-28
[7] Yuan H, Chen G. Network virus-epidemic model with the point-to-group information propagation. Appl Math Comput, 2008, 206:357-367
[8] Hua Y, Junjie W, Guoquing C. Infection function for virus propagation in computer network:An empirical study. Tsingchua Science and Technology, 2009, 14(5):669-676
[9] Kephart J O, White S R, Chess D M. Computers and epidemiology. IEEE Spectrum, 1993, 30:20-26
[10] Korobeinikov A. Lyapunov functions and global properties for SEIR and SEIS epidemic models. Math Med Biol, 2004, 21:75-83
[11] Li M Y, Muldowney J S. Global stability for the SEIR model in epidemiology. Math Biosci, 1995, 125:155-64
[12] Li M Y, Muldowney J. A geometric approach to global stability problems. SIAM J Math Anal, 1996, 27(4):1070-1083
[13] Li J, Xiao Y, Zhang F, Yang Y. An algebraic approach to proving the global stability of a class of epidemic models. Nonlinear Anal Real World Appl, 2012, 13:2006-2016
[14] Lyapunov A M. The General Problem of the Stability of Motion. London:Taylor and Francis, 1992
[15] Ma C, Yang Y, Guo X, Improved SEIR viruses propagation model and the patch's impact on the propagation of the virus. J Comput Inform Sys, 2013, 9(8):3243-3251
[16] Martin R H. Logarithmic norms and projections applied to linear different differential systems. J Math Anal Appl, 1974, 45:432-454
[17] Muroya Y, Li H, Kuniya T. On global stability of a nonresident computer virus model. Acta Math Sci, 2014, 34(5):1427-1445
[18] Ren J G, Yang X F, Zhu Q Y, Yang L X, Zhang C M. A novel computer virus model and its dynamics. Chaos Soliton Fract, 2012, 45:74-79
[19] Piqueira J R C, Araujo V O. A modified epidemiological model for computer viruses. Appl Math Comput, 2009, 213:355-360
[20] Salle J P. The Stability of Dynamical System. Philadelphia, PA:SIAM, 1976
[21] Serazzi G, Zanero S. Computer virus propagation models. Lecture Notes in Computer Science, 2004, 2965:26-50
[22] Zhu Q, Yang X, Ren J. Modeling and analysis of the spread of computer virus. Commun Nonlinear Sci Numer Simulat, 2012, 17:5117-5124
[23] Yang L X, Yang X, Zhu Q, Wen L. A computer virus model with graded cure rates. Nonlinear Anal-Real, 2013, 14:414-422
[24] Yuan H, Chen G. Network virus-epidemic model with the point-to-group information propagation. Appl Math Comput, 2008, 206:357-367 |