[1] Ben-Bassat O. Mirror symmetry and generalized complex manifolds. math.AG/0405303
[2] Bott R, Tu L. Differential forms in algebraic topology//Graduates Texts in Mathematics, 82. New York,
Berlin: Springer-Verlag, 1982
[3] Chiantese S, Gmeiner F, Jeschek C. Mirror symmetry for topological sigma models with generalzed K¨ahler
geometry. hep-th/0408169
[4] Eguchi T, Yang S -K. N = 2 superconformal models as topological field theories. Modern Phys Lett A,
1990, 5(21): 1639–1701
[5] Gualtieri M. Generalized complex geometry
[D]. Oxford: Oxford University, 2003. math.DG/0401221
[6] Hitchin N. Generalized Calabi-Yau manifolds. math.DG/0209099
[7] Kac V G. Vertex Algebra for Beginners. University Lecture Series, 10. 2nd edition. Providence, RI:
American Mathematical Society, 1938
[8] Kapustin A, Li Y. Topological sigma-models with H-flux and twisted generalized complex manifolds.
hep-th/0407249
[9] Kapustin A, Li Y. Open String BRST cohomology for generalized complex branes. hep-th/0501071
[10] Malikov F, Schechtman V, Vaintrob A. Chiral de Rham complex. Comm Math Phys, 1999, 204(2):
439–473. math.AG/9803041
[11] Pestun V. Topological strings in generalized complex space. Adv Theor Math Phys, 2007, 11(3): 399–450
[12] Strominger A, Yau S -T, Zaslow E. Mirror symmetry is T-Duality. Nucl Phys B, 1996, 479: 243–259,
hep-th/9606040
[13] Witten E. Mirror manifolds and topological field theory//Yau S T, ed. Essays on Mirror Manifolds, Hong
Kong: International Press, 1992: 120–158, hep-th/9112056
[14] Zhou J. Vertex algebra in differential geometry I. math.DG/0006201
[15] Zhou J. Lectures on vertex operator algebra. Lecture given at summer school at Zhejiang University,
Hangzhou, July, 2002
[16] Zucchini R. A Sigma model field theoretical realization of Hitchin’s generalized geometry. hep-th/0409181
|