[1] Zhou Z L. Symbolic Dynamics. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1997 (in Chinese)
[2] Zhou Z L. Weakly almost periodic points and measure center. Science in China Series A, 1993, 36(2): 142–153
[3] HuangW, Ye X D. Devaney's chaos or 2-scattering implies Li-Yorke's chaos. Topology and Its Applications, 2002, 117(2): 259–272
[4] Xu Z J, Lin W, Ruan J. Decay of correlation implies chaos in the sense of Devaney. Chaos , Solitons and Fractals, 2004, 22(2): 305–310
[5] Wu C, Xu Z J, Lin W, Ruan J. Stochastic properties in Devaney's chaos. Chaos, Solitons and Fractals, 2005, 23(4): 1195–1199
[6] Lardjane S. On some stochastic properties in Devaney's chaos. Chaos, Solitons and Fractals, 2006, 28(3): 668–672
[7] Kahng B, Redefining chaos: Devaney-chaos for piecewise continuous dynamical systems. J Math Mode Meth Appl Sci, 2009, 3(4): 317–326
[8] Liu H, Wang L D, Chu Z Y. Devaney’s chaos implies distributional chaos in a sequence. Nonlinear Anal: TMA, 2009, 71(12): 6144–6147
[9] Akhmet M U. Devaney’s chaos of a relay system. Comm Nonlinear Sci Numer Simul, 2009, 14(4): 1486–1493
[10] Hou B Z, Ma X F, Liao G F. Difference between Devaney chaos associated with two systems. Nonlinear Anal: TMA, 2010, 72(3/4): 1616–1620
[11] Walter P. An Introduction to Ergodic Theory. New York: Springer-Verlag, 1982
[12] Ye X D, Huang W, Shao S. An Introduction to Topologically Dynamical Systems. Beijing: Sci Press, 2008(in Chinese)
[13] Zhou Z L. Weakly almost periodic point and ergodic measure. Chin Ann Math, 1992, 13(2): 137–142
[14] Zhou Z L, He W H. Level of the orbit's topological structure and semiconjugacy. Science in China, Series A, 1995, 38: 897–907 (in Chinese)
[15] Wu X R. The Set of Positive Upper Banach Density Recurrence [D]. Nanjing: Nanjing Normal University, 2004 (in Chinese)
[16] Tan F, Zhang R F. On F senfitive pairs. Acta Mathematica Scientia, 2011, 31B(4): 1425–1435 |