[1] Bourdaud G. Lp-estimates for certain non-regular pseudo-differential operators. Comm Partial Differ Equ, 1982, 7(9): 1023–1033
[2] Bourdaud G, Meyer Y. In´egalit´es L2 pr´ecis´ees pour la classe S0 0,0. Bull Soc Math France, 1988, 116:401–s412
[3] Boulkhemair A. L2 estimates for pseudodifferential operators. Ann Scuola Norm Sup Pisa Cl Sci, 1995,22(4): 155–183
[4] Calder´on A P, Vaillancourt R. A Class of bounded pseudo-differential operators. Proc Nat Acad Sci, 1972,69: 1185–1187
[5] Coifman R, Meyer Y. Au del`a des op´erateurs pseudo-diff´erentiels. Ast´erisque #57, Soci´et´e Math de France,1978
[6] Deng D G, Yan L X, Yang Q X. Blocking analysis and T(1) theorem. Science in China, 1998, 41: 801–808
[7] Deng D G, Yan L X, Yang Q X. On H¨ormander condition. Chinese Science Bulletin, 1997, 42: 1341–1345
[8] Deng D G, Yan L X, Yang Q X. L2 boundedness of commutators of Calder´on-Zygmund singular integral operators. Progress in Natural Science, 1998, 8(4): 416–427
[9] Fefferman C. Lp bounds for pseudo-differential operators. Israel J Math, 1973, 14: 413–417
[10] Folland G B. Harmonic Analysis on Phase Space. Ann of Math Studies. Princeton, NJ: Princeton University Press, 1989
[11] H¨ormander L. The Analysis of Partial Differential Equation, I, II, III, IV. New York: Springer-Verlag, 1983–1985
[12] Leopold H G, Yang Q X. L2 continuity and general non-smooth H¨ormander symbol operators, preprint.
[13] Meyer Y. Ondelettes et Op´erateurs, I et II. Paris: Hermann, 1991–1992
[14] Meyer Y, Yang Q X. H¨ormander condition and T1 theorems in the general context//Liu Peide, ed. Functional Space Theory and Its Applications. Proceeding of International Conference & 13th Academic Symposium in China. UK: Research Information Ltd UK, 2003: 169–172
[15] Peng L Z, Yang Q X. Predual spaces for Q spaces. Acta Math Sci, 2009, 29B(2): 243–250
[16] Stein E M. Harmonic Analysis–Real Variable Methods, Orthogonality, and Integrals. Princeton: Princeton University Press, 1993
[17] Yang Q X. Fast algorithms for Calder´on-Zygmund singular integral operators. Appl Comp Harmonic Anal, 1996, 3: 120–126
[18] Yang Q X. New wavelet bases and isometric between symbolic operators spaces OpSm 1,δ and kernel distribution spaces, Acta Math Sin, English Series, 2002, 18(1): 107–118
[19] Yang Q X. Wavelet and Distribution. Beijing: Beijing Science and Technology Press, 2002
[20] Yang Q X. Wavelet characterization of H¨ormander symbol class Smρ,δ and applications to the operator’s continuity. Proc Indian Acad Sci (Math Sci), 2005, 115(3): 1–22
[21] Yang Q X. Symbol operator and the speed of approximation by compact operator. Acta Math Sin, Chinese Series, 2007, 50(5)
[22] Yang Q X, Chen Z X, Peng L Z. Uniform characterization of function spaces by wavelets. Acta Math Sci, 2005, 25B(1): 130–144
[23] Yang Z Y, Yang Q X. A note on Convolution-type Calderon-Zygmund operators. Acta Math Sci, 2009, 29B(5): 1341–1350 |