数学物理学报(英文版) ›› 2014, Vol. 34 ›› Issue (4): 1331-1344.doi: 10.1016/S0252-9602(14)60087-4

• 论文 • 上一篇    下一篇

A NOTE ON SINGULAR INTEGRALS WITH DOMINATING MIXED SMOOTHNESS IN TRIEBEL-LIZORKIN SPACES

Hung Viet LE   

  1. Faculty of Science and Technology, Hoa Sen University, Quang Trung Software Park, Section 10, Ward Tan Chanh Hiep, District 12, Ho Chi Minh City, Viet Nam
  • 收稿日期:2012-01-06 修回日期:2013-04-02 出版日期:2014-07-20 发布日期:2014-07-20

A NOTE ON SINGULAR INTEGRALS WITH DOMINATING MIXED SMOOTHNESS IN TRIEBEL-LIZORKIN SPACES

Hung Viet LE   

  1. Faculty of Science and Technology, Hoa Sen University, Quang Trung Software Park, Section 10, Ward Tan Chanh Hiep, District 12, Ho Chi Minh City, Viet Nam
  • Received:2012-01-06 Revised:2013-04-02 Online:2014-07-20 Published:2014-07-20

摘要:

Let h be a measurable function defined on R+×R+. Let  Ω∈ L(log L+)νq (Sn1−1×Sn2−1) (1 ≤ νq ≤2) be homogeneous of degree zero and satisfy certain cancellation condi-tions. We show that the singular integral

Tf(x1, x2) = p. v.∫∫Rn1+nΩ(1, 2)h(|y1|, |y2|)/|y1|n1 |y2|n2 f(x1y1, x2y2)dy1dy2
maps from Sα1α2p, qF(Rn1 × Rn2 ) boundedly to itself for 1 < p, q <∞, α1α2 ∈R.

关键词: singular integrals, Marcinkiewicz integrals, mixed smoothness, Triebel-Lizorkin spaces

Abstract:

Let h be a measurable function defined on R+×R+. Let  Ω∈ L(log L+)νq (Sn1−1×Sn2−1) (1 ≤ νq ≤2) be homogeneous of degree zero and satisfy certain cancellation condi-tions. We show that the singular integral

Tf(x1, x2) = p. v.∫∫Rn1+nΩ(1, 2)h(|y1|, |y2|)/|y1|n1 |y2|n2 f(x1y1, x2y2)dy1dy2
maps from Sα1α2p, qF(Rn1 × Rn2 ) boundedly to itself for 1 < p, q <∞, α1α2 ∈R.

Key words: singular integrals, Marcinkiewicz integrals, mixed smoothness, Triebel-Lizorkin spaces

中图分类号: 

  • 42B20