[1] Carrozza M, Passarelli Di Napoli A. Composition of maximal operators. Publ Mat, 1996, 40: 397–409
[2] Coifman R R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315–331
[3] Cruz-Uribe SFO D, P´erez C. Two weight extrapolation via the maxiaml operator. J Funct Anal, 2000, 174: 1–17
[4] Garc´?a-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland Publishing Co, 1985
[5] Grafakos L. Classical Fourier Analysis. 2nd ed. New York: Springer, 2008
[6] Grafakos L. Multilinear Calder´on-Zygmund singular integral operators: background and recent developments. To appear
[7] Grafakos L, Torres R H. Multilinear Calder´on-Zygmund theory. Adv Math, 2002, 165: 124–164
[8] Grafakos L, Torres R H. Maximal operators and weighted norm inequalities for multilinear singular integrals. Indiana Univ Math J, 2002, 51: 1261–1276
[9] Hu G. Weighted norm inequalities for the multilinear Calder´on-Zygmund operators. Sci China Math, 2010, 53: 1863–1876
[10] Hu G, Zhu Y. Weighted norm inequalities for the commutators of multilinear singular integral operators. Acta Math Sci, 2011, 31B(3): 749–764
[11] Lerner A K. Weighted norm inequalities for the local sharp maximal function. J Fourier Anal Appl, 2004, 10: 645–674
[12] Lerner A K, Ombrosi S, P´erez C, Torres R H, Trujillo-Gonz´alez R. New maximal functions and multiple weights for the multilinear Calder´on-Zygmund theory. Adv Math, 2009, 220: 1222–1264
[13] Li W, Xue Q, Yabuta K. Multilinear Calderon-Zygmund operators on weighted Hardy spaces. Studia Math, 2010, 199: 1–16
[14] P´erez C.Weighted norm inequalities for singular integral operators. J London Math Soc, 1994, 49: 296–308
[15] P´erez C. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted Lp-spaces with different weights. Proc London Math Soc, 1995, 49: 135–157
[16] Rao M, Ren Z. Theory of Orlicz Spaces. New York: Marcel Dekker Inc, 1991
[17] Str¨omberg J O. Bounded mean oscillation with Orlicz norm and duality of Hardy spaces. Indiana Univ Math J, 1979, 28: 511–544 |