[1] Bank S B, Kaufman R P. An extension of H¨older’s theorem concerning the Gamma function. Funkcialaj Ekvacioj, 1976, 19: 53–63
[2] Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964
[3] Laine I. Nevanlinna Theory and Complex Differential Equations. Berlin: W. de Gruyter, 1993
[4] Yang L. Value Distribution Theory and New Research. Beijing: Science Press, 1982 (in Chinese)
[5] Yi H X, Yang C C. The Uniqueness Theory of Meromorphic Functions. Beijing: Science Press, 1995 (in Chinese)
[6] Ablowitz M, Halburd R G, Herbst B. On the extension of Painlev´e property to difference equations. Nonlinearity, 2000, 13: 889–905
[7] Bergweiler W and Langley J K. Zeros of differences of meromorphic functions. Math Proc Camb Phil Soc, 2007, 142: 133–147
[8] Chen Z X, Shon K H. On zeros and fixed points of differences of meromorphic functions. J Math Anal Appl, 2008, 344: 373–383
[9] Chen Z X, Shon K H. Estimates for zeros of differences of meromorphic functions. Science in China Series A, 2009, 52(11): 2447–2458
[10] Chen Z X, Huang Z B, Zheng X M. On propertiess of difference polynomials. Acta Math Sci, 2011, 31B(2): 627–733
[11] Chiang Y M, Feng S J. On the Nevanlinna characteristic of f(z+) and difference equations in the complex plane. Ramanujan J, 2008, 16: 105–129
[12] Chiang Y M, Ruijsenaars S N N. On the Nevanlinna order of meromorphic solutions to linear analytic difference equations. Stud Appl Math, 2007, 116(3): 257–287
[13] Halburd R G, Korhonen R. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J Math Anal Appl, 2006, 314: 477–487
[14] Halburd R G, Korhonen R. Nevanlinna theory for the difference operator. Ann Acad Sci Fenn Math, 2006, 31: 463–478
[15] Halburd R G, Korhonen R. Meromorphic solution of difference equation, integrability and the discrete Painlev´e equations. J Phys A Math Theor, 2007, 40: 1–38
[16] Halburd R G, Korhonen R. Finite-order meromorphic solutions and the discrete Painlev´e equations. Proc London Math Soc, 2007, 94: 443–474
[17] Halburd R G, Korhonen R. Existence of finite-order meromorphic solutions as a detector of integrability in difference equations. Physica D, 2006, 218: 191–203
[18] Heittokangas J, Korhonen R, Laine I, Rieppo J, Hohge K. Complex difference equations of Malmquist type. Comput Methods Funct Theory, 2001, 1: 27–39
[19] Ishizaki K, Yanagihara N. Wiman-Valiron method for difference equations. Nagoya Math J, 2004, 175: 75–102
[20] Laine I, Yang C C. Clunie theorems for difference and q-difference polynomials. J London Math Soc, 2007, 76(3): 556–566
[21] Conway J B. Functions of One Complex Variable. New York: Springer–Verlag, 1978
[22] Chen Z X. On the hyper-order of solutions of some second order linear differential equations. Acta Math
Sinica, English Series, 2002, 18(1): 79–88
[23] Hayman W K. Slowly growing integral and subharmonic functions. Comment Math Helv, 1960, 34: 75–84
|