[1] Coti Zelati V, Ekeland I, Sésé E. A variational approach to homoclinic orbits in Hamiltonian systems. Math Ann, 1990, 228:133-160
[2] Coti Zelati V, Rabinowitz P H. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J Amer Math Soc, 1991, 4:693-727
[3] Ding Y H. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems. Nonlinear Anal, 1995, 25:1095-1113
[4] Ding Y H, GirardiM. Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign. Dynam Systems Appl, 1993, 2(1):131-145
[5] Ding Y H, Jeanjean L. Homoclinic orbits for a nonperiodic Hamiltonian system. J Diff Eqns, 2007, 237:473-490
[6] Fei G H. On periodic solutions of superquadratic Hamiltonian systems. Elec J Diff Equ, 2002, 2002(8):1-12
[7] Guo C J, O'Regan D, Agarwal R. Homoclinic orbits for singular second-order neutral differential equation. J Math Anal Appl, 2010, 366:550-560
[8] Guo C J, O'Regan D, Agarwal R. Existence of subharmonic solutions and homoclinic orbits for a class of high-order differential equations. Appl Anal, 2011, 9(7):1169-1183
[9] Guo C J, O'Regan D, Agarwal R. Existence and multiplicity of homoclinic orbits of a second-order differential difference equation via variational methods. Scientific Publications of the State University of Novi Pazarser A:Appl Math Inform and Mech, 2012, 4(1):1-15
[10] Hofer H, Wysocki K. First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math Ann, 1990, 228:483-503
[11] Izydorek M, Janczewska J. Homoclinic solutions for a class of the second order Hamiltonian systems. J Diff Eqns, 2005, 219:375-389
[12] Pontryagin L S, Gamkreledze R V, Mischenko E F. The Mathematical Theory of Optimal Processes. New York:Interscience, 1962
[13] Rabinowitz P H. Homoclinic orbits for a class of Hamiltonian systems. Proc Roy Soc Edinburgh, 1990, 114A:33-38
[14] Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence, RI:Amer Math Soc, 1986
[15] Rabinowitz P H, Tanaka K. Some results on connecting orbits for a class of Hamiltonian systems. Math Z, 1991, 206:472-499
[16] Rustichini A. Functional differential equations of mixed type:the linear autonomous case. J Dynam Diff Eqns, 1989, 1:121-143
[17] Rustichini A. Hopf bifurcation for functional differential equations of mixed type. J Dynam Diff Eqns, 1989, 1:145-177
[18] Sésé E. Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math Z, 1993, 209:561-590
[19] Stuart C A. Bifurcation into spectral gaps. Bull Belg Math Soc, Supplement, 1995
[20] Wu J H, Zou X F. Asymptotic and periodic boundary value problems of of mixed FDEs and wave solutions lattice differential equations. J Diff Eqns, 1997, 21:315-357
[21] Szulkin A, Zou W M. Homoclinic orbits for asymptotically linear Hamiltonian systems. J Funct Anal, 2001, 187:25-41
[22] Xu X J. Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Discrete Contin Dyn Syst Ser B, 2003, 3(4):643-654
[23] Xu X J. Homoclinic orbits for first order Hamiltonian systems with convex potentials. Adv Nonlinear Studi, 2006, 6:399-410 |