数学物理学报(英文版) ›› 2014, Vol. 34 ›› Issue (3): 653-659.doi: 10.1016/S0252-9602(14)60037-0

• 论文 • 上一篇    下一篇

ON THE DIFFERENCE COUNTERPART OF BRÜCK´S CONJECTURE

陈宗煊   

  1. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
  • 收稿日期:2012-09-04 修回日期:2013-04-22 出版日期:2014-05-20 发布日期:2014-05-20

ON THE DIFFERENCE COUNTERPART OF BRÜCK´S CONJECTURE

CHEN Zong-Xuan   

  1. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
  • Received:2012-09-04 Revised:2013-04-22 Online:2014-05-20 Published:2014-05-20

摘要:

In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value α we utilize properties of complex difference equations to prove the difference counterpart of Br¨uck´s conjecture, that is, if Δf(z) = f(z + η) − f(z) and f(z) share one value a (≠ ) CM, where η ∈ C is a constant such that f(z + η) ≠ f(z), then
Δf(z) − a/f(z) − a =a/aα.

关键词: Complex difference, Borel exceptional value, sharing value

Abstract:

In this article, for a transcendental entire function f(z) of finite order which has a finite Borel exceptional value α we utilize properties of complex difference equations to prove the difference counterpart of Br¨uck´s conjecture, that is, if Δf(z) = f(z + η) − f(z) and f(z) share one value a (≠ ) CM, where η ∈ C is a constant such that f(z + η) ≠ f(z), then
Δf(z) − a/f(z) − a =a/aα.

Key words: Complex difference, Borel exceptional value, sharing value

中图分类号: 

  • 39A10