[1] Degond P, Lemou M. Dispersion relations for the linearized Fokker-Planck equation. Arch Ration Mech Anal, 1997, 138(2): 137–167
[2] Desvillettes L, Villani C. On the spatially homogeneous Landau equation for hard potentials (I-II). Comm P D E, 2000, 25 (1/2): 179–298
[3] Desvillettes L, Villani C. On the trend to global equilibrium for spatially inhomogeneous kinetic systems:
the Boltzmann equation. Invent Math, 2005, 159 (2): 245–316
[4] DiPerna R J, Lions P L. On the Cauchy problem for Boltzmann equations: Global existence and weak stability. Ann Math, 1989, 130: 321–366
[5] Duan R -J, Ukai S, Yang T. A combination of energy method and spectral analysis for the study on systems
for gas motions. preprint, 2008
[6] Duan R -J, Ukai S, Yang T, Zhao H -J. Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications. Comm Math Phys, 2008, 277: 189–236
[7] Glassey R T. The Cauchy Problem in Kinetic Theory. Philadelphia, PA: Society for Industrial and Applied
Mathematics (SIAM), 1996
[8] Grad H. Asymptotic theory of the Boltzmann equation II//Laurmann J A, ed. Rarefied Gas Dynamics. New York: Academic Press, 1963: 26–59
[9] Guo Y. The Landau Equation in periodic box. Comm Math Phys, 2002, 231: 391–434
[10] Guo Y. The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53(4): 1081–1094
[11] Guo Y. Boltzmann diffusive limit beyond the Navier-Stokes approximation. Comm Pure Appl Math, 2006,
59(5): 626–687
[12] Hsiao L, Yu H -J. On the Cauchy problem of the Boltzmann and Landau equations with soft potentials.
Quart Appl Math, 2007, 65(2): 281–315
[13] Kawashima S. The Boltzmann equation and thirteen moments. Japan J Appl Math, 1990, 7: 301–320
[14] Li F -C, Yu H -J. Decay rate of global classical solutions to the Landau equation with external force.
Nonlinearity, 2008, 21: 1813–1830
[15] Liu T -P, Yang T, Yu S -H. Energy method for the Boltzmann equation. Physica D, 2004, 188:(3/4): 178–192
[16] Liu T -P, Yu S -H. Boltzmann equation: micro-macro decompositions and positivity of shock profiles. Comm Math Phys, 2004, 246(1): 133–179
[17] Strain R M, Guo Y. Exponential decay for soft potentials near Maxwellian. Arch Rat Mech Anal, 2008,
187(2): 287–339
[18] Ukai S. On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc
Japan Acad, 1974, 50: 179–184
[19] Ukai S. Les solutions globale de l’équation de Boltzmann dans léspace tout entier et dans le demi-espace.
C R Acad Sci Paris Ser A, 1976, 282(6): 317–320
[20] Ukai S, Yang T. Mathematical theory of Boltzmann equation. Lecture Notes Series No 8. Hong Kong: Liu Bie Ju Center of Mathematical Sciences, City University of Hong Kong, 2006
[21] Villani C. A survey of mathematical topics in kinetic theory//Friedlander S, Serre D, Eds. Handbook of Fluid Mechanics, Vol I. Amsterdam: North-Holland, 2002: 71–305
[22] Villani C. Hypocoercivity. Memoirs Amer Math Soc, in press, 2008
[23] Villani C. Hypocoercive diffusion operators. Proceedings of the International Congress of Mathematicians,
Madrid, 2006
[24] Yang T, Yu H -J. Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space.
Preprint, 2008
[25] Yang T, Yu H -J, Zhao H -J. Cauchy Problem for the Vlasov-Poisson-Boltzmann system. Arch Rational
Mech Anal, 2006, 182(3): 415–470
[26] Yang T, Zhao H -J. Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system. Comm
Math Physm, 2006, 268(3): 569–605
[27] Yu H -J. Global classical solution of the Vlasov-Maxwell-Landau system near Maxwellians. J Math Phys,
2004, 45(11): 4360–4376
[28] Zhan M. Local existence of classical solutions to the Landau equations. Transport Theory Statist Phys,
1994, 23(4): 479–499
[29] Zhan M. Local existence of solutions to the Landau-Maxwell system. Math Methods Appl Sci, 1994, 17(8): 613–641
|