[1] Bostan M, Goudon Th. High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system. Ann Inst H Poincaré Anal Non Linéaire, 2008, 25(6):1221-1251 [2] Bostan M, Goudon Th. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinet Relat Mod, 2008, 1(1):139-169 [3] Bouchut F. Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions. J Funct Anal, 1993, 111:239-258 [4] Calogero S, Alcántara J. On a relativistic Fokker-Planck equation in kinetic theory. Kinet Relat Mod, 2011, 4:401-426 [5] Carrillo J, Labrunie S. Global solutions for the one-dimensional Vlasov-Maxwell system for laser-plasma interaction. Math Models Methods Appl Sci, 2006, 16(1):19-57 [6] Chae M. The global classical solution of the Vlasov-Maxwell-Fokker-Planck system near Maxwellian. Math Models Methods Appl Sci, 2011, 21:1007-1025 [7] Duan R J, Strain R M. Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space. Comm Pure Appl Math, 2011, 64:1497-1546 [8] DiPerna R, Lions P L. Global weak solutions of Vlasov-Maxwell systems. Comm Pure Appl Math, 1989, 42(6):729-757 [9] DiPerna R, Lions P L. Global weak solutions of kinetic equations. Rend Sem Mat Univ Politec Torino, 1988, 46(3):259-288 [10] Esposito R, Guo Y, Marra R. Stability of the front under a Vlasov-Fokker-Planck Dynamics. Arch Ration Mech Anal, 2010, 195:75-116 [11] Glassey R T. The Cauchy Problem in Kinetic Theory. Philadelphia, PA:SIAM, 1996 [12] Glassey R, Strauss W. Singularity formation in a collisionless plasma could occur only at high velocities. Arch Ration Mech Anal, 1986, 9(1):59-90 [13] Guo Y. The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent Math, 2003, 153(3):593-630 [14] Hsiao L, Li F C, Wang S. The combined quasineutral and inviscid limit of Vlasov-Maxwell-Fokker-Planck system. Acta Math Sin, Chin Ser, 2009, 52(4):1-14 [15] Hwang H J, Jang J. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete Contin Dyn Syst Ser B, 2013, 18(3):681-691 [16] Kawashima S. The Boltzmann equation and thirteen moments. Japan J Appl Math, 1990, 7:301-320 [17] Lai R. On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with nonvanishing viscosity. Math Meth Appl Sci, 1998, 21:1287-1296 [18] Lei Y J, Zhao H J. The Vlasov-Maxwell-Boltzmann system with a uniform ionic background near Maxwellians. J Differential Equations, 2016, 260:2830-2897 [19] Luo L, Yu H J. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinet Relat Mod, 2016, 9(2):393-405 [20] Nieto J, Poupaud F, Soler J. High-field limit of the Vlasov-Poisson-Fokker-Planck system. Arch Ration Mech Anal, 2001, 158:29-59 [21] O'Dwyer B, Victory Jr H D. On classical solutions of the Vlasov-Poisson-Fokker-Planck system. Indiana Univ Math J, 1990, 39(1):105-156 [22] Pankavich S, Michalowski N. Global classical solutions for the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinet Relat Mod, 2015, 1(8):169-199 [23] Rein G, Weckler J. Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions. J Differential Equations, 1992, 99(1):59-77 [24] Schaeffer J. The Vlasov-Maxwell-Fokker-Planck system in two space dimensions. Math Meth Appl Sci, 2015, 39:302-316 [25] Schaeffer J, Pankavich S. Global classical solutions of the "One and one-half dimensional" Vlasov-MaxwellFokker-Planck system. Comm Math Sci, 2016, 14:209-232 [26] Wollman S. An existence and uniqueness theorem for the Vlasov-Maxwell system. Comm Pure Appl Math, 1984, 37:457-462 [27] Yang T, Yu H J. Global classical solutions for the Vlasov-Maxwell-Fokker-Planck system. SIAM J Math Anal, 2010, 42(1):459-488 [28] Yang T, Yu H J. Optimal convergence rates of Landau equation with external forcing in the whole space. Acta Math Sci, 2009, 29B(4):1035-1062 |