[1] Barletta E, Dragomir S, Urakawa H. Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds. Indiana Univ Math J, 2001, 50(2): 719-746 [2] Chang S C, Chang T H. On the existence of pseudoharmonic maps from pseudohermitian manifolds into Riemannian manifolds with nonpositive sectional curvature. Asian J Math,2013, 17(1): 1-16 [3] Chong T, Dong Y X, Ren Y B, Yang G L. On harmonic and pseudoharmonic maps from pseudo-Hermitian manifolds. Nagoya Math J, 2019, 234: 170-210 [4] Dragomir S, Tomassini G.Differential Geometry and Analysis on CR Manifolds. Boston, MA: Birkhäuser, 2006 [5] Eells J, Sampson J H. Harmonic mappings of Riemannian manifolds. Amer J Math, 1964, 86: 109-160 [6] Graham C R, Lee J M. Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains. Duke Math J, 1988, 57: 697-720 [7] Lee J M. Psuedo-Einstein structures on CR manifolds. Amer J Math, 1988, 110(1): 157-178 [8] Mitteau J C. Sur les applications harmoniques. J Differential Geometry, 1974, 9: 41-54 [9] Ren Y B, Yang G L, Chong T. Liouville theorem for pseudoharmonic maps from Sasakian manifolds. J Geom Phys, 2014, 81:47-61 [10] Ren Y B, Yang G L. Pseudo-harmonic maps from closed pseudo-Hermitian manifolds to Riemannian manifolds with nonpositive sectional curvature. Calc Var Partial Differential Equations, 2018, 57(5): Art 128 [11] Tanaka N.A differential Geometric Study on Strongly Pseudo-convex Manifolds. Lectures in Mathematics, Department of Mathematics, Kyoto University, No 9. Tokyo: Kinokuniya Book-Store Co, Ltd, 1975 [12] Webster S M. Pseudo-Hermitian structures on a real hypersurface. J Differential Geometry, 1978, 13(1): 25-41 [13] Zhou Zhenrong. Integral formulas for anti-invariant submanifolds of a Sasakian space form. Acta Math Sci, 1999, 19B: 525-528 |