[1] Abtahi F, Kamali Z, Toutounchi M. The Bochner-Schoenberg-Eberlein property for vector-valued Lipschitz algebras. J Math Anal Appl, 2019, 479: 1172-1181 [2] Bochner S. A theorem on Fourier-Stieltjes integrals. Bull Amer Math Soc, 1934, 40: 271-276 [3] Dales H G, Ülger A. Approximate identities in Banach function algebras. Studia Math, 2015, 226: 155-187 [4] Dales H G.Banach function algebras and BSE-norms. Graduate course during ${23}^{rd}$ Banach algebra conference. Oulu, Finland, 2017 [5] Doran R S, Wichmann J.Approximate identities and factorization in Banach Modules. Lecture Notes in Math, vol 768. Berlin: Springer-Verlag, 1979 [6] Eberlein W F. Characterizations of Fourier-Stieltjes transforms. Duke Math J, 1955, 22: 465-468 [7] Inoue J, Takahasi S E. Constructions of bounded weak approximate identities for Segal algebras on LCA group. Acta Sci Math,(Szeged), 2000, 66: 257-271 [8] Inoue J, Takahasi S E. On characterizations of the image of Gelfand transform of commutative Banach algebras. Math Nachr, 2007, 280: 105-126 [9] Izuchi K. The Bochner-Schoenberg-Eberlein theorem and spaces of analytic functions on the open unit disc. Math Japon, 1992, 37: 65-77 [10] Jones C A, Lahr C D. Weak and norm approximate identities are different. Pacific J Math, 1977, 72: 99-104 [11] Kamali Z, Bami M. Bochner-Schoenberg-Eberlein property for abstract Segal algebras. Proc Japan Acad Ser A, 2013, 89: 107-110 [12] Kaniuth E, Ülger A. The Bochner-Schoenberg-Eberlein property for commutative Banach algebras. especially Fourier and Fourier-Stieltjes algebras. Trans Amer Math Soc, 2010, 362: 4331-4356 [13] Kaniuth E.A Course in Commutative Banach Algebras. New York: Springer Science+Business Media, 2009 [14] Kaniuth E. The Bochner-Schoenberg-Eberlein property and spectral synthesis for certain Banach algebra products. Canad J Math, 2015, 67: 827-847 [15] Larsen R.An Introduction to the Theory of Multipliers. New York: Springer-Verlag, 1971 [16] Rudin W.Fourier Analysis on Groups. New York: Wiley Interscience, 1984 [17] Schoenberg I J. A remark on the preceding note by Bochner. Bull Amer Math Soc, 1934, 40: 277-278 [18] Takahasi S E, Hatori O. Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type theorem. Proc Amer Math Soc, 1990, 110: 149-158 [19] Takahasi S E, Hatori O. Commutative Banach algebras and BSE-inequalities. Math Japonica, 1992, 37: 47-52 [20] Takahasi S E, Takahashi Y, Hatori O, Tanahashi K. Commutative Banach algebras and BSE-norm. Math Japonica, 1997, 46: 273-277 |