[1] Ahuja O P, Khatter K, Ravichandran V.Toeplitz determinants associated with Ma-Minda classes of starlike and convex functions. Iran J Sci Technol Trans A Sci, 2021, 45(6): 2021-2027 [2] Ali M F, Thomas D K, Vasudevarao A. Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull Aust Math Soc, 2018, 97(2): 253-264 [3] Bracci F, Graham I, Hamada H, Kohr G. Variation of Loewner chains, extreme and support points in the class $S^0$ in higher dimensions. Constr Approx, 2016, 43(2): 231-251 [4] Cartan H.Sur la possibilitéd'étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes// Lecons sur les Fonctions Univalentes ou Multivalentes. Paris: Gauthier-Villars, 1933 [5] Giri S, Kumar S S. Hermitian-Toeplitz determinants for certain univalent functions. Anal Math Phy, 2023, 13(2): Art 37 [6] Gong S.Convex and Starlike Mappings in Several Complex Variables. Beijing: Science Press, 1998 [7] Graham I, Hamada H, Honda T, et al. distortion and coefficient bounds for Carathéodory families in $\Bbb{C}^n$ and complex Banach spaces. J Math Anal Appl, 2014, 416(1): 449-469 [8] Graham I, Hamada H, Kohr G. Parametric representation of univalent mappings in several complex variables. Canad J Math, 2002, 54(2): 324-351 [9] Graham I, Kohr G.Geometric Function Theory in One and Higher Dimensions. Monographs and Textbooks in Pure and Applied Mathematics, 255. New York: Marcel Dekker, 2003 [10] Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chinese Ann Math Ser B, 2008, 29(4): 353-368 [11] Hamada H, Honda T, Kohr G. Growth theorems and coefficients bounds for univalent holomorphic mappings which have parametric representation. J Math Anal Appl, 2006, 317(1): 302-319 [12] Hamada H, Kohr G, Kohr M. The Fekete-Szegö problem for starlike mappings and nonlinear resolvents of the Carathéodory family on the unit balls of complex Banach spaces. Anal Math Phys, 2021, 11(3): Art 115 [13] Hamada H, Kohr G, Liczberski P. Starlike mappings of order $\alpha$ on the unit ball in complex Banach spaces. Glas Mat Ser III, 2001, 36: 39-48 [14] Janowski W. Some extremal problems for certain families of analytic functions I. Ann Polon Math, 1973, 28: 297-326 [15] Kohr G. On some best bounds for coefficients of several subclasses of biholomorphic mappings in $\mathbb{C}^n$. Complex Variables Theory Appl, 1998, 36(3): 261-284 [16] Kohr G, Liczberski P. On strongly starlikeness of order alpha in several complex variables. Glas Mat Ser III, 1998, 33: 185-198 [17] Liu X, Liu T. The sharp estimates of all homogeneous expansions for a class of quasi-convex mappings on the unit polydisk in $\Bbb C^n$. Chinese Ann Math Ser B, 2011, 32(2): 241-252 [18] Xu Q, Liu T. On the Fekete and Szegö problem for the class of starlike mappings in several complex variables. Abstr Appl Anal2014, 2014: Art 807026 [19] Xu Q, Liu T. On the coefficient inequalities for a class of holomorphic mappings. Complex Var Elliptic Equ, 2020, 65(9): 1474-1487 [20] Xu Q, Liu T. On coefficient estimates for a class of holomorphic mappings. Sci China Ser A, 2009, 52(4): 677-686 [21] Xu Q, Liu T, Liu X. The sharp estimates of homogeneous expansions for the generalized class of close-to-quasi-convex mappings. J Math Anal Appl, 2012, 389(2): 781-791 [22] Xu Q, Liu T, Liu X. Fekete and Szegö problem in one and higher dimensions. Sci China Math, 2018, 61(10): 1775-1788 [23] Xu Q, Yang T, Liu T, Xu H. Fekete and Szegö problem for a subclass of quasi-convex mappings in several complex variables. Front Math China, 2015, 10(6): 1461-1472 [24] Ye K, Lim L H. Every matrix is a product of Toeplitz matrices. Found Comput Math, 2016, 16(3): 577-598 |