[1] Anderson J, Pommerenke C, Clunie J. On Bloch functions and normal functions. J Reine Angew Math, 1974, 270(1): 12-37 [2] Chatzifountas C, Girela D, Peláez J á. A generalized Hilbert matrix acting on Hardy spaces. J Math Anal Appl, 2014, 413(1): 154-168 [3] Cowen C C, MacCluer B D. Composition Operators on Spaces of Analytic Functions. Boca Raton: CRC Press, 1995 [4] Diamantopoulos E. Hilbert matrix on Bergman spaces. Ill J Math, 2004, 48(3): 1067-1078 [5] Diamantopoulos E. Operators induced by Hankel matrices on Dirichlet spaces. Analysis, 2004, 24: 345-360 [6] Diamantopoulos E, Siskakis A G. Composition operators and the Hilbert matrix. Studia Math, 2000, 140(2): 191-198 [7] Duren P L.Theory of $H^p$ Spaces. New York: Academic Press, 1970 [8] Duren P L, Schuster A. Bergman Spaces.Mathematical Surveys and Monographs 100. Providence RI: American Mathematical Society, 2004 [9] Galanopoulos P, Peláez J á. A Hankel matrix acting on Hardy and Bergman spaces. Studia Math, 2010, 200(3): 201-220 [10] Girela D, Merchán N. Hankel matrices acting on the Hardy space $H^1$ and on Dirichlet spaces. Rev Math Complut, 2019, 32(3): 799-822 [11] Girela D, Merchán N. A generalized Hilbert operator acting on conformally invariant spaces. Banach J Math Anal, 2018, 12(2): 374-398 [12] Girela D, Merchán N. A Hankel matrix acting on spaces of analytic functions. Integr Equ Oper Theory.2017, 89(2): 581-594 [13] Hastings W W. A Carleson measure theorem for Bergman spaces. Proc Amer Math Soc, 1975, 52: 237-241 [14] Jevtić M, Karapetrović B. Generalized Hilbert matrices acting on spaces that are close to the Hardy space $H^1$ and to the space BMOA. Complex Anal Oper Theory, 2019, 13: 2357-2370 [15] Li S, Zhou J. Essential norm of generalized Hilbert matrix from Bloch type spaces to BMOA and Bloch space. AIMS Math2021, 6: 3305-3318 [16] MacCluer B, Zhao R. Vanishing logarithmic Carleson measures. Illinois J Math, 2002, 70(1): 59-69 [17] Merchán N. Mean Lipschitz spaces and a generalized Hilbert operator. Collect Math, 2019, 12(2): 374-398 [18] Tang P, Lv R, Zhang X.An integral estimate and Ces$\grave{\text{a}}$ro operators on normal weight Dirichlet spaces (in Chinese). Acta Math Sin, 2021, 64(4): 627-636 [19] Xu Y, Ye S. A derivative-Hilbert operator acting from Bergman spaces to Hardy spaces. AIM Math, 2023, 8(4): 9290-9302 [20] Xu Y, Ye S, Zhou Z. A derivative-Hilbert operator acting on Dirichlet space. Open Math, 2023, 21: 20220559 [21] Ye S.Weighted composition operator between different weighted Bloch-type spaces (in Chinese). Acta Math Sin, 2007, 50(4): 927-942 [22] Ye S. Multipliers and cyclic vectors on the weighted Bloch space. Math J Okayama Univ, 2006, 48(1): 135-143 [23] Ye S, Feng G.A derivative-Hilbert operator acting on Hardy spaces. Acta Math Sci, 2023, 43B(6): 2136-2148 [24] Ye S, Zhou Z. A derivative-Hilbert operator acting on Bergman spaces. J Math Anal Appl, 2022, 506(1): Art 125553 [25] Ye S, Zhou Z. A derivative-Hilbert operator acting on the Bloch space. Complex Anal Oper Theory, 2021, 15(5): Art 88 [26] Zhang X, Guo Y, Chen H.Integral estimates and the boundedness of the generalized Forelli-Rudin type operators on weighted Lebesgue spaces (in Chinese). Sci Sin Math, 2023, 53(10): 1357-1376 [27] Zhang X, Guo Y, Chen H, et al. Generalized Forelli-Rudin type operators between several function spaces on the unit ball of $C^n$. Acta Math Sci, 2024, 44B(4): 1301-1326 [28] Zhao R. On logarithmic Carleson measures. Acta Sci Math, 2003, 69: 605-618 [29] Zhu K.Operator Theory in Function Spaces. Surveys Monoge 138. 2nd ed. Providence, RI: Amer Math Soc, 2007 |