[1] Donoho D. Compressed sensing. IEEE Trans Inform Theory, 2006, 52: 1289-1306 [2] Candes E, Tao T. Decoding by linear programming. IEEE Trans Inform Theory, 2005, 51: 4203-4215 [3] Candes E, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inform Theory, 2006, 52: 5406-5425 [4] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory, 2006, 52: 489-09 [5] Geng J W, Yu Z, Li C S. Synthetic aperture radar increment imaging based on compressed sensing. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5 [6] Imrich Andráš, Pavol Dolinsky, Michaeli L. Sparse signal acquisition via compressed sensing and principal component analysis. Measurement Science Review, 2018, 9: 175-182 [7] Wang G, Niu M Y, Fu F W. Deterministic constructions of compressed sensing matrices based on codes. Cryptography and Communications, 2019, 11: 759-775 [8] Bai H, Li X M. Measurement-driven framework with simultaneous sensing matrix and dictionary optimization for compressed sensing. IEEE Access, 2020, 8: 35950-35963 [9] Alberti G S, Campodonico P, Santacesaria M. Compressed sensing photoacoustic tomography reduces to compressed sensing for undersampled fourier measurements. SIAM Journal on Imaging Sciences, 2021, 14: 1039-1077 [10] Eldar Y C, Mishali M. Robust recovery of signals from a structured union of subspaces. IEEE Trans Inform Theory, 2009, 55: 5302-5316 [11] Chen Y T, Lin S J. Preconditioning with RIP improvement for compressed sensing systems in total noise environment. Signal Processing, 2021, 179: Art 107765 [12] Fu M, Hao J J, Xie L J, et al. Exact support recovery of sparse signals from noisy measurements. Acta Math Sci, 2021, 41A: 1555-1565 [13] Xu Y, Qiu X H. Block-sparse signals recovery using orthogonal multimatching. Signal Process, 2014, 30: 706-711 [14] Fu Y, Li H, Zhang Q, et al. Block-sparse recovery via redundant block OMP. Signal Processing, 2014, 97: 162-171 [15] Davenport M, Wakin M. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans Inform Theory, 2010, 56: 4395-4401 [16] Wen J M, Zhou Z C, Liu Z L, et al. Sharp sufficient conditions for stable recovery of block sparse signals by block orthogonal matching pursuit. Appl Comput Harmon Anal, 2019, 47: 948-74 [17] Qi R, Yang D, Zhang Y, et al. On recovery of block sparse signals via block generalized orthogonal matching pursuit. Signal Processing, 2018, 153: 34-46 [18] Chen W G, Ge H M. A sharp recovery condition for block sparse signals by block orthogonal multi-matching pursuit. Science China Mathematics, 2017, 60: 167-182 [19] Chen W G, Ge H M. Recovery of block sparse signals under the conditions on block RIC and ROC by BOMP and BOMMP. Inverse Problems and Imaging, 2018, 12: 153-174 [20] Eldar Y C, Kuppinger P, Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans Signal Process, 2010, 58: 3042-3054 [21] Lai M J, Liu Y. The null space property for sparse recovery from multiple measurement vectors. Appl Comput Harmon Anal, 2011, 30: 402-406 [22] Shi Y L, Wang L B, Luo R. Sparse recovery with block multiple measurement vectors algorithm. IEEE Access, 2019, 7: 9470-9475 [23] Wen J M, Zhou Z C, Li D F, et al. A novel sufficient condition for generalized orthogonal matching pursuit. IEEE Communications Letters, 2017, 21(4): 805-808 [24] Wen J M, Zhang R, Yu W. Signal-dependent performance analysis of orthogonal matching pursuit for exact sparse recovery. IEEE Trans Signal Process, 2020, 68: 5031-5046 [25] Ding J, Chen L M, Gu Y T. Perturbation analysis of orthogonal matching pursuit. IEEE Trans Signal Process, 2013, 61: 398-410 |