[1] Fu Z J, Ren K, Shu J G, et al. Enabling personalized search over encrypted outsourced data with efficiency improvement. J IEEE Trans Parall Distr Syst, 2016, 27(9): 2546-2559 [2] Fu Z J, Wu X L, Guan C W, et al. Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. J IEEE Trans Inf Foren Sec, 2017, 11(12): 2706-2716 [3] Gu B, Sun X M, Sheng V S. Structural minimax probability machine. J IEEE Trans Neur Net Lear, 2017, 28(7): 1646-1656 [4] Pan Z Q, Lei J J, Zhang Y, et al. Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. J IEEE Trans Broadcast, 2016, 62(3): 675-684 [5] Pan Z Q, Zhang Y, Kwong S. Efficient motion and disparity estimation optimization for low complexity multiview video coding. J IEEE Trans Broadcast, 2015, 61(2): 166-176 [6] Broyden C G. The convergence of a class of double-rank minimization algorithms 1. general considerations. SIMA J Appl Math, 1970, 6(1): 76-90 [7] Fletcher R. A new approach to variable metric algorithms. Comput J, 1970, 13(3): 317-322 [8] Goldfarb D. A family of variable-metric methods derived by variational means. Math Comp, 1970, 24(109): 23-26 [9] Shanno D F. Conditioning of quasi-Newton methods for function minimization. Math Comp, 1970, 24(111): 647-656 [10] Powell M J D. Some global convergence properties of a variable metric algorithm for minimization without exact line searches. Nonlinear Programming, SIAM-AMS Proceedings.1976, 9(1): 53-72 [11] Byrd R H, Nocedal J, Yuan Y X. Global convergence of a cass of quasi-Newton methods on convex problems. SIAM J Numer Anal, 1987, 24(5): 1171-1190 [12] Byrd R H, Nocedal J. A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J Numer Anal, 1989, 26(3): 727-739 [13] Dixon L C W. Variable metric algorithms: Necessary and sufficient conditions for identical behavior of nonquadratic functions. J Optim Theory Appl, 1972, 10(1): 34-40 [14] Griewank A. The global convergence of partitioned BFGS on problems with convex decompositions and Lipschitzian gradients. Math Program, 1991, 50(1): 141-175 [15] Powell M J D. On the convergence of the variable metric algorithm. IMA J Appl Math, 1971, 7(1): 21-36 [16] Powell M J D. Updating conjugate directions by the BFGS formula. Math Program, 1987, 38(1): 29-46 [17] Biggs M C. Minimization algorithms making use of non-quadratic properties of the objective function. IMA J Numer Anal, 1971, 8(3): 123-123 [18] Nocedal J, Yuan Y X. Analysis of a self-scaling quasi-Newton method. Math Program, 1993, 61: 19-37 [19] Oren S S, Luenberger D G. Self-scaling variable metric (ssvm) algorithms: Part i: Criteria and sufficient conditions for scaling a class of algorithms. Manag Sci, 1974, 20(5): 845-862 [20] Yuan Y X. A modified bfgs algorithm for unconstrained optimization. IMA J Numer Anal, 1991, 3: 325-332 [21] Cheng W Y, Li D H. Spectral scaling BFGS method. J Optim Theory Appl, 2010, 146(2): 305-319 [22] Sheng Z, Yuan G L, Cui Z R. A new adaptive trust region algorithm for optimization problems. Acta Math Sci, 2018, 38B(2): 479-496 [23] Yuan G L, Wei Z X. The superlinear convergence analysis of a nonmonotone BFGS algorithm on convex objective functions. Acta Math Sci, 2008, 24B: 35-42 [24] Dai Y H. Convergence properties of the BFGS algoritm. SIAM J Optim, 2002, 13(3): 693-701 [25] Yuan G L, Sheng Z, Wang B P, et al. The global convergence of a modified BFGS method for nonconvex functions. J Comput Appl Math, 2017, 327: 274-294 [26] Li D H, Fukushima M. A modified BFGS method and its global convergence in nonconvex minimization. J Comput Appl Math, 2001, 129(1/2): 15-35 [27] Li D H, Fukushima M. On the global convergence of BFGS method for nonconvex unconstrained optimization problems. SIAM J Optim, 2001, 11(4): 1054-1064 [28] Yuan G L, Wang X L, Sheng Z. The projection technique for two open problems of unconstrained optimization problems. J Optim Theory Appl, 2020, 186(2): 590-619 [29] Yuan G L, Wei Z X, Lu X W. Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search. Appl Math Model, 2017, 47: 811-825 [30] Bongartz I, Conn A R, Gould N, et al. CUTE: Constrained and unconstrained testing environment. ACM Trans Math Software, 1995, 21(1): 123-160 [31] Moré J J, Garbow B S, Hillstrom K E. Testing unconstrained optimization software. ACM Trans Math Software, 1981, 7(1): 17-41 [32] Andrei N. An unconstrained optimization test functions collection. Adv Model Optim, 2008, 10(1): 147-161 [33] Dolan E D, Moré, Jorge J. Benchmarking optimization software with performance profiles. Math Program, 2002, 91(2): 201-213 [34] Zhou W J, Zhang L. A nonlinear conjugate gradient method based on the MBFGS secant condition. Optim Methods Softw, 2006, 21(5): 707-714 [35] Yang Y G. A robust BFGS algorithm for unconstrained nonlinear optimization problems. Optim, 2022, 73(3): 851-873 [36] Yuan G L, Zhao X, Liu K Jun, et al. An adaptive projection BFGS method for nonconvex unconstrained optimization problems. Numer Algorithms, 2024, 95(4): 1747-1767 [37] Yuan G L, Li P Y, Lu J Y. The global convergence of the BFGS method with a modified WWP line search for nonconvex functions. Numer Algorithms, 2022, 91(1): 353-365 [38] Yuan G L, Zhang M X, Zhou Y J. Adaptive scaling damped BFGS method without gradient Lipschitz continuity. Appl Math Lett, 2022, 124: Art 107634 [39] Tits A L, Yang Y. Globally convergent algorithms for robust pole assignment by state feedback. IEEE Trans Automat Contr, 1996, 41(10): 1432-1452 |