[1] Andrews B. Contraction of convex hypersurfaces in Euclidean space. Calc Var Partial Differential Equations, 1994, 2(2): 151-171 [2] Andrews B. Pinching estimates and motion of hypersurfaces by curvature functions. J Reine Angew Math, 2007, 608: 17-33 [3] Andrews B, Baker C. Mean curvature flow of pinched submanifolds to spheres. J Differential Geom, 2010, 85(3): 357-395 [4] Brendle S, Hung P K, Wang M T. A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold. Comm Pure Appl Math, 2016, 1: 124-144 [5] Chen C Q, Guan P F, Li J F, Scheuer J. A fully-nonlinear flow and quermassintegral inequalities in the sphere. Pure Appl Math Quar, 2022, 18(2): 437-461 [6] Chen L, Mao J. Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold. J Geom Anal, 2018, 28(2): 921-949 [7] Chow B. Deforming convex hypersurfaces by the $n$th root of the Gaussian curvature. J Differential Geom, 1985, 22: 117-138 [8] Gao Y, Mao J.Inverse Gauss curvature flow in a time cone of Lorentz-Minkowski space $R^{n+1}_1$. arXiv: 2106.05973 [9] Guan P F, Li J F. A mean curvature type flow in space forms. Int Math Res Not, 2015, 2015(13): 4716-4740 [10] Gerhardt C. Flow of nonconvex hypersurfaces into spheres. J Differential Geom, 1990, 32(1): 299-314 [11] Gerhardt C. Inverse curvature flows in hyperbolic space. J Differential Geom, 2011, 89(3): 487-527 [12] Ge Y X, Wang G F, Wu J, Xia C. A Penrose inequality for graphs over Kottler space. Calc Var Partial Differential Equations, 2015, 52(3/4): 755-782 [13] Huisken G. Flow by mean curvayure of convex surfaces into spheres. J Differential Geom, 1984, 20: 237-260 [14] Huisken G. Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature. Invent Math, 1986, 84(3): 463-480 [15] Huisken G. Deforming hypersurfaces of the sphere by their mean curvature. Math Z, 1987, 195(2): 205-219 [16] Huisken G, Polden A.Geometric evolution equations for hypersurfaces//Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Math, Vol 1713. Berlin: Springer-Verlag, 1999: 45-84 [17] Jin Y H, Wang X F, Wei Y. Inverse curvature flows of rotation hypersurfaces. Acta Math Sin Engl Ser, 2021, 37(11): 1692-1708 [18] Lei L, Xu H W.A new version of Huisken's convergence theorem for mean curvature flow in spheres. arXiv:1505.07217 [19] Lei L, Xu H W.An optimal convergence theorem for mean curvature flow arbitrary codimension in hyperbolic spaces. arXiv:1503.06747 [20] Liu K F, Xu H W, Ye F, Zhao E T. The extension and convergence of mean curvature flow in higher codimension. Trans Amer Math Soc, 2017, 370: 2231-2261 [21] Lieberman G.Second Order Parabolic Differential Equations. Singapore: World Scientific, 1996 [22] Li H Z, Wei Y. On inverse mean curvature flow in Schwarzschild space and Kottler space. Calc Var Partial Differential Equations, 2017, 56: Art 62 [23] Li H Z, Xu B T. A class of inverse mean curvature type flows in the anti-de Sitter-Schwarzschild manifold. Sci China Math, 2021, 64(7): 1573-1588 [24] Li H Z, Wei Y, Xiong C W. A geometric inequality on hypersurface in hyperbolic space. Adv Math, 2014, 253: 152-162 [25] Lu S Y. Inverse curvature flow in anti-de Sitter-Schwarzschild manifold. Comm Anal Geom, 2019, 27(2): 465-489 [26] Scheuer J. Non-scale-invariant inverse curvature flows in hyperbolic space. Calc Var Partial Differential Equations, 2015, 53(2): 91-123 [27] Scheuer J. Inverse curvature flows in Riemannian warped products. J Funct Anal, 2019, 276(4): 1097-1144 [28] Scheuer J, Xia C. Locally constrained inverse curvature flows. Trans Amer Math Soc, 2019, 372(10): 6771-6803 [29] Urbas J. On the expansion of star-shaped hypersurfaces by symmetric functions of their principal curvatures. Math Z, 1990, 205(3): 355-372 [30] Wang Z H.A Minkowski-type Inequality for Hypersurfaces in the Reissner-Nordström-anti-deSitter Manifold [D]. New York: Columbia University, 2015 |