[1] Barbosa J L, Gomes J, Silveira A. Foliation of 3-dimentional space forms by surfaces with constant mean curvature. Bol Soc Bras Math, 1987, 18: 1–12
[2] Berard P, Lopes de Lima L, Rossman W. Index growth of hypersurfaces with constant mean curvature. Mathematische Zeitschrift, 2002, 239(1): 99–115
[3] Bryant R L. Surfaces of mean curvature one in hyperbolic space. Th´eorie des vari´et´es minimales et appli-cations, Ast´erisque, 1987, 154/155: 341–347
[4] Do Carmo M. Riemannian Geometry. Bosten: Birkhauser, 1992
[5] Jleli M. Moduli space theory of constant mean curvature hypersurfaces. Journal of Advanced Nonlinear Studies. 2009, 9(1): 29–68
[6] Jleli M. Symmetry breaking of immersed constant mean curvature hypersurfaces. Advanced Nonlinear Studies, 2009, 9: 129–147
[7] Jleli M. Stability results of rotationally constant mean curvature surfaces in hyperbolic space. Colloq Math, 2012, 126: 269–280
[8] Jleli M. Bifurcations of constant mean curvature surfaces of revolution in hyperbolic space (To appear)
[9] Korevaar N, Kusner R, Meeks W, Solomon B. Constant mean curvature surfaces in hyperbolic space. American, J Maths, 1992, 114: 1–43
[10] Kusner R,Mazzeo R, Pollack D. The moduli spaces of complete embeeded constant mean curvature surfaces. Geom Funct Anal, 1996, 6: 120–137
[11] Lawson B. Complete minimal surfaces in S3. Ann Math, 1970, 92: 335–374
[12] Lawson B. Lectures on minimal submanifolds. Vol1. Second Ed//Mathematics Lecture Series. Vol 9.Wilmn-ington, Del, 1980
[13] Mazzeo R, Pacard F. Bifurcating nodoids//Commemorating SISTAG, Contemporary Mathematics 314. American Mathematical Society, 2002: 169–186
[14] Pacard F, Pimentel F A A. Attaching handles to constant-mean-curvature −1 surfaces in hperbolic 3-space. Jour of the Institute of Mathematics of Jussieu, 2004, 3: 421–459
[15] Rossman W, Umehara K, Yamada K. Mean curvature 1 surface with low total curvature in hyperbolic 3-space I. Hiroshima Math J, 2004, 34(1): 21–56
[16] Umehara K, Yamada K. Complete surface of constant mean curvature 1 in the hyperbolic 3-space. Ann of Math, 1993, 137: 611–638 |