[1] Smoller J. Shock Waves and Reaction-Diffusion Equations. New York:Springer-Verlag, 1983 [2] Wyss W. The fractional diffusion equation. J Math Phys, 1986, 27(11):2782-2785 [3] Podlubny I. Fractional Differential Equations. SanDiego:Academic Press, 1999 [4] Benson D A, Wheatcraft S W, Meerschaert M M. Application of a fractional advection-dispersion equation. Water Resour Res, 2000, 36(6):1403-1412 [5] Magin R L. Fractional Calculus in Bioengineering. Connecticut:Begell House Publisher Inc, 2006 [6] Li J, Guo B L. Parameter identification in fractional differential equations. Acta Mathematica Scientia, 2013, 33B(3):855-864 [7] Jiang Y J, Ma J T. Moving finite element methods for time fractional partial differential equations. Sci China Math, 2013, 56(6):1287-1300 [8] Li Q, Wang W, Teng X, Wu X. Ground states for fractional Schrödinger equations with electromagnetic fields and critical growth. Acta Mathematica Scientia, 2020, 40B(1):59-74 [9] Li X W, Li Y X, Liu Z H, et al. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions. Frac Calc Appl Anal, 2018, 21(6):1439-1470 [10] Liu F W, Feng L B, Anh V, et al. Unstructed-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregualr convex domains. Comput Math Appl, 2019, 78:1637-165 [11] Li X W, Liu Z H, Li J, et al. Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Mathematica Scientia, 2019, 39B(1):229-242 [12] Caputo M. Mean fractional-order-derivatives differential equations and filters. Annali dellUniversita di Ferrara, 1995, 41:73-84 [13] Chechkin A V, Gorenflo R, Sokolov I M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys Rev E, 2002, 66:046129 [14] Ye H, Liu F, Anh V. Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J Comput Phys, 2015, 298:652-660 [15] Chen H, Lü S J, Chen W P. Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain. J Comput Phys, 2016, 315:84-97 [16] Li X L, Rui H X. A block-centered finite difference method for the distributed-order time-fractional diffusionwave equation. Appl Numer Math, 2018, 131:123-139 [17] Wei L L. A fully Discrete LDG Method for the Distributed-order Time-Fractional Reaction-Diffusion Equation. Bull Malays Math Sci Soc, 2019, 42:979-994 [18] Li X Y, Wu B Y. A numerical method for solving distributed order diffusion equations. Appl Math Lett, 2016, 53:92-99 [19] Abbaszadeh M, Dehghan M. An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer Algor, 2017, 75:173-211 [20] Pimenov V G, Hendy A S, De Staelen R H. On a class of non-linear delay distributed order fractional diffusion equations. J Comput Appl Math, 2017, 318:433-443 [21] Morgado M L, Rebelo M, Ferrás L L, et al. Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. App Numer Math, 2017, 114:108-123 [22] Hendy A S, De Staelen R H, Pimenov V G. A semi-linear delayed diffusion-wave system with distributed order in time. Numer Algor, 2018, 77:885-903 [23] Liu Q Z, Mu S J, Liu Q X, et al. An RBF based meshless method for the distributed order time fractional advection-diffusion equation. Eng Analy Bound Ele, 2018, 96:55-63 [24] Pourbabaee M, Saadatmandi A. A novel Legendre operational matrix for distributed order fractional differential equations. Appl Math Comput, 2019, 361:215-231 [25] Rahimkhani P, Ordokhani Y, Lima P M. An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets. Appl Numer Math, 2019, 145:1-27 [26] Xu Y, Zhang Y M, Zhao J J. Error analysis of the Legendre-Gauss collocation methods for the nonlinear distributed-order fractional differential equation. Appl Numer Math, 2019, 142:122-138 [27] Zaky M A, Machado J T. Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations. Comput Math Appl, 2019 [28] Moghaddam B P, Tenreiro Machado J A, Morgado M L. Numerical approach for a class of distributed order time fractional partial differential equations. Appl Numer Math, 2019, 136:152-162 [29] Li J, Liu F, Feng L, et al. A novel finite volume method for the Riesz space distributed-order advectiondiffusion equation. Appl Math Model, 2017, 46:536-553 [30] Li J, Liu F, Feng L, et al. A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput Math Appl, 2017, 74:772-783 [31] Fan W, Liu F. A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl Math Lett, 2018, 77:114-121 [32] Zhang H, Liu F, Jiang X, et al. A Crank-Nicolson ADI Galerkin-Legendre spectral method for the twodimensional Riesz space distributed-order advection-diffusion equation. Comput Math Appl, 2018, 76:2460-2476 [33] Jia J, Wang H. A fast finite difference method for distributed-order space-fractional partial differential equations on convex domains. Comput Math Appl, 2018, 75:2031-2043 [34] Zheng X C, Liu H, Wang H, et al. An efficient finite volume method for nonlinear distributed-order spacefractional diffusion equations in three space dimensions. J Sci Comput, 2019, 80:1395-1418 [35] Shi Y H, Liu F, Zhao Y M, et al. An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain. Appl Math Model, 2019, 73:615-636 [36] Javidi M, Heris M S. Analysis and numericalmethods for the Riesz space distributed-order advectiondiffusion equation with time delay. SeMA J, 2019 [37] Abbaszadeh M. Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. Appl Math Lett, 2019, 88:179-185 [38] Soklov I M, Chechkin A V, Klafter J. Distributed-order fractional kinetics. Acta Phys Pol B, 2004, 35:1323-1341 [39] Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225:1533-1552 [40] Wang X, Liu F, Chen X. Novel second-order accurate implicit numerical methods for the Riesz space distributed-order advection-dispersion equations. Adv Math Phys, 2015, 2015:1-14 [41] Shen S, Liu F, Anh V, et al. Detailed analysis of a conservative difference approximation for the time fractional diffusion equation. J Comput Appl Math, 2006 [42] Feng L B, Zhuang P, Liu F, et al. Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl Math Comput, 2015, 257:52-65 [43] Wang H, Basu T S. A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J Sci Comput, 2012, 34:2444-2458 [44] Wang H, Wang K, Sircar T. A direct O(N log2 N) finite difference method for fractional diffusion equations. J Comput Phys, 229:8095-8104 |