[1] Benci V, Fortunato D. An eigenvalue problem for the Schrödinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11(2):283-293 [2] Benci V, Fortunato D. Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations. Rev Math Phys, 2002, 14(4):409-420 [3] Ambrosetti A. On Schrödinger-Poisson systems. Milan J Math, 2008, 76(1):257-274 [4] Ambrosetti A, Ruiz D. Multiple bound states for the Schrödinger-Poisson problem. Commun Contemp Math, 2008, 10(3):391-404 [5] Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J Math Anal Appl, 2008, 345(1):90-108 [6] Azzollini A, d'Avenia P, Pomponio A. On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann Inst H Poincaré Anal Non Linéaire, 2010, 27(2):779-791 [7] d'Avenia P. Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv Nonlinear Stud, 2002, 2(2):177-192 [8] D'Aprile T, Mugnai D. Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv Nonlinear Stud, 2004, 4(3):307-322 [9] D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134(5):893-906 [10] Ruiz D. The Schrödinger-Poisson equation under the effect of a nonlinear local term. J Funct Anal, 2006, 237(2):655-674 [11] Jiang Y S, Zhou H S. Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251(3):582-608 [12] Zhao L G, Liu H D, Zhao F K. Existence and concentration of solutions for Schrödinger-Pisson equations with steep well potential. J Differential Equations, 2013, 255(1):1-23 [13] Zhao L G, Zhao F K. On the existence of solutions for the Schrödinger-Poisson equations. J Math Anal Appl, 2008, 346(1):155-169 [14] Cerami G, Vaira G. Positive solutions for some non-autonomous Schrödinger-Poisson systems. J Differential Equations, 2010, 248(3):521-543 [15] Vaira G. Ground states for Schrödinger-Poisson type systems. Ric Mat, 2011, 60(2):263-297 [16] Li G B, Peng S J, Yan S S. Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Commun Contemp Math, 2010, 12(6):1069-1092 [17] Batista A M, Furtado M F. Positive and nodal solutions for a nonlinear Schrödinger-Poisson system with sign-changing potentials. Nonlinear Anal Real World Appl, 2018, 39:142-156 [18] Cerami G, Molle R. Positive bound state solutions for some Schrödinger-Poisson systems. Nonlinearity, 2016, 29(10):3103-3119 [19] Chen J Q. Multiple positive solutions of a class of non autonomous Schrödinger-Poisson systems. Nonlinear Anal Real World Appl, 2015, 21:13-26 [20] Huang L R, Rocha E M, Chen J Q. Two positive solutions of a class of Schrödinger-Poisson system with indefinite nonlinearity. J Differential Equations, 2013, 255(8):2463-2483 [21] Wang C H, Yang J. Positive solution for a nonlinear Schrödinger-Poisson system. Discrete Contin Dyn Syst, 2018, 38(11):5461-5504 [22] Chen S J, Tang C L. High energy solutions for the superlinear Schrödinger-Maxwell equations. Nonlinear Anal, 2009, 71(10):4927-4934 [23] Zhong X J, Tang C L. Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in $\mathbb{R}^3$. Nonlinear Anal Real World Appl, 2018, 39:166-184 [24] Ye Y W, Tang C L. Existence and multiplicity results for the Schrödinger-Poisson system with superlinear or sublinear terms. Acta Math Sci, 2015, 35A:668-682 [25] Ruiz D. Semiclassical states for coupled Schrödinger-Maxwell equations:concentration around a sphere. Math Models Methods Appl Sci, 2005, 15(1):141-164 [26] Ianni I, Vaira G. On concentration of positive bound states for the Schrödinger-Poisson problem with potentials. Adv Nonlinear Stud, 2008, 8(3):573-595 [27] He Y, Li G B. Standing waves for a class of Schrödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Ann Acad Sci Fenn Math, 2015, 40(2):729-766 [28] Kwong M K. Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbb{R}^N$. Arch Rational Mech Anal, 1989, 105(3):243-266 [29] Berestycki H, Lions P L. Nonlinear scalar field equations. I. Existence of a ground state. Arch Rational Mech Anal, 1983, 82(4):313-345 [30] Yang J F, Yu X H. Existence of solutions for a semilinear elliptic equation in RN with sign-changing weight. Adv Nonlinear Stud, 2008, 8(2):401-412 [31] Willem M. Minimax Theorems. Boston:Birkhäuser, 1996 [32] Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3):486-490 |